
The Geochemist’s Workbench®

Release 15

GWB
Reference

Manual

The Geochemist’s Workbench®

Release 15

GWB
Reference

Manual

Craig M. Bethke
Brian Farrell

Aqueous Solutions, LLC
Champaign, Illinois

Printed August 31, 2021

This document © Copyright 2021 by Aqueous Solutions LLC. All rights reserved. Earlier editions
copyright 2000–2020. This document may be reproduced freely to support any licensed use of
the GWB software package.

Software copyright notice: Programs GSS, Rxn, Act2, Tact, SpecE8, Gtplot, TEdit, React, Phase2,
P2plot, X1t, X2t, Xtplot, and ChemPlugin © Copyright 1983–2021 by Aqueous Solutions LLC. An
unpublished work distributed via trade secrecy license. All rights reserved under the copyright laws.

The Geochemist’s Workbench®, ChemPlugin�, We put bugs in our software�, and The
Geochemist’s Spreadsheet� are a registered trademark and trademarks of Aqueous Solutions
LLC; Microsoft®, MS®, Windows XP®, Windows Vista®, Windows 7®, Windows 8®, and
Windows 10® are registered trademarks of Microsoft Corporation; PostScript® is a registered
trademark of Adobe Systems, Inc. Other products mentioned in this document are identified by
the trademarks of their respective companies; the authors disclaim responsibility for specifying
which marks are owned by which companies. The software uses zlib © 1995-2005 Jean-Loup
Gailly and Mark Adler, and Expat © 1998-2006 Thai Open Source Center Ltd. and Clark Cooper.

The GWB software was originally developed by the students, staff, and faculty of the
Hydrogeology Program in the Department of Geology at the University of Illinois
Urbana-Champaign. The package is currently developed and maintained by Aqueous Solutions
LLC at the University of Illinois Research Park.

Address inquiries to

Aqueous Solutions LLC
301 North Neil Street, Suite 400
Champaign, IL 61820 USA

Warranty: The Aqueous Solutions LLC warrants only that it has the right to convey license to the
GWB software. Aqueous Solutions makes no other warranties, express or implied, with respect to
the licensed software and/or associated written documentation. Aqueous Solutions disclaims any
express or implied warranties of merchantability, fitness for a particular purpose, and
non-infringement. Aqueous Solutions does not warrant, guarantee, or make any representations
regarding the use, or the results of the use, of the Licensed Software or documentation in terms
of correctness, accuracy, reliability, currentness, or otherwise. Aqueous Solutions shall not be
liable for any direct, indirect, consequential, or incidental damages (including damages for loss of
profits, business interruption, loss of business information, and the like) arising out of any claim
by Licensee or a third party regarding the use of or inability to use Licensed Software. The entire
risk as to the results and performance of Licensed Software is assumed by the Licensee. See
License Agreement for complete details.

License Agreement: Use of the GWB is subject to the terms of the accompanying License
Agreement. Please refer to that Agreement for details.

Cover photo: Salinas de Janubio by Jorg Hackemann.

Contents

Chapter List

1 Introduction . 1

2 Command Line Interface . 3

3 Thermo Datasets . 9

4 Surface Datasets . 25

5 Report Command . 35

6 Control Scripts . 55

7 Plug-in Feature . 59

8 Units Recognized . 115

9 Graphics Output . 123

10 Scatter Data . 127

11 Multiple Analyses . 135

12 Remote Control . 139

Index . 145

v

vi

Contents

1 Introduction 1
1.1 Chapters in the manual 1
1.2 Legacy features 2

2 Command Line Interface 3
2.1 Spelling completion 3
2.2 History substitution 3
2.3 Special characters 5
2.4 Calculator 5
2.5 Startup files 6
2.6 Online documentation 6
2.7 System commands 6
2.8 Text size in the windows 7
2.9 Keyboard shortcuts 7

3 Thermo Datasets 9
3.1 Dataset format 9
3.2 Temperature expansions 10

3.2.1 T -table expansions 10
3.2.2 Polynomial expansions 11
3.2.3 Choice of expansion 12

3.3 Header data 12
3.3.1 Initial lines 12
3.3.2 Principal temperatures 13
3.3.3 Header variables 13

3.4 Species and reactions 14
3.4.1 Elements 14
3.4.2 Basis species 14
3.4.3 Redox couples 15
3.4.4 Aqueous species 16
3.4.5 Free electron 17
3.4.6 Minerals 18
3.4.7 Gases 18
3.4.8 Oxide components 19

3.5 Virial coefficients 19

3.5.1 Temperature expansions . . . 20
3.5.1.1 Legacy temperature ex-

pansion 20
3.5.1.2 Newtemperatureexpansion 20
3.5.1.3 Temperaturerangeofvalidity 21

3.5.2 Data blocks for species pairs
and triplets 21

3.5.2.1 Legacy temperature ex-
pansion for Pitzer coeffi-
cients 21

3.5.2.2 New temperature expan-
sion for Pitzer coefficients 21

3.5.2.3 New temperature expan-
sion for SIT coefficients . 22

3.6 Legacy dataset formats 22
3.6.1 Temperature expansions . . . 23
3.6.2 Initial lines 23
3.6.3 SIT activity model 23
3.6.4 Header variables 23
3.6.5 Arbitrary reaction definition . 23
3.6.6 Redox couples 23
3.6.7 Free electron 23
3.6.8 Formulae for aqueous species 24
3.6.9 Fugacity coefficients 24

4 Surface Datasets 25
4.1 Sections in a surface dataset . . 25
4.2 Temperature expansions 26
4.3 Header data 26

4.3.1 Initial lines 26
4.4 Species and reactions 27

4.4.1 Basis species 28
4.4.2 Sorbing minerals 28
4.4.3 Surface species 29

vii

Contents

4.5 Legacy dataset formats 32
4.5.1 Thermo data line 32
4.5.2 Three-layer models 32
4.5.3 Polydentate sorption 32
4.5.4 End line 32
4.5.5 Charged uncomplexed sites . 32
4.5.6 Site density units 33
4.5.7 Arbitrary reaction definition . 33
4.5.8 Temperature expansions . . . 33

5 Report Command 35

6 Control Scripts 55
6.1 Control statements 56
6.2 Interacting with the application . 56
6.3 Example control script 57
6.4 Tcl license agreement 58

7 Plug-in Feature 59
7.1 C++ 60

7.1.1 Initializing the GWB application 60
7.1.2 Configuringandexecutingcal-

culations 61
7.1.3 Retrieving the results 62
7.1.4 C++ programs 63
7.1.5 Compiling and linking 66

7.2 Fortran 69
7.2.1 Initializing the GWB application 70
7.2.2 Configuringandexecutingcal-

culations 71
7.2.3 Retrieving the results 72
7.2.4 Fortran programs 73
7.2.5 Compiling 77

7.3 Java 80
7.3.1 Initializing the GWB application 80
7.3.2 Configuringandexecutingcal-

culations 82
7.3.3 Retrieving the results 82
7.3.4 Java programs 83
7.3.5 Java command line 87

7.4 Perl 88
7.4.1 Initializing the GWB application 88
7.4.2 Configuringandexecutingcal-

culations 90
7.4.3 Retrieving the results 90

7.4.4 Perl programs 91
7.4.5 Perl command line 93

7.5 Python 95
7.5.1 Initializing the GWB application 95
7.5.2 Configuringandexecutingcal-

culations 97
7.5.3 Retrieving the results 97
7.5.4 Python programs 98
7.5.5 Python command line 100

7.6 MATLAB 102
7.6.1 GWBpluginMATLABwrapper

class overview 102
7.6.2 Initializing the GWB application103
7.6.3 Configuringandexecutingcal-

culations 104
7.6.4 Retrieving the results 104
7.6.5 Cleaning up 105
7.6.6 MATLAB code examples us-

ing the plug-in feature 106
7.6.7 MATLAB command line . . . 108

7.7 Other 109
7.7.1 GWBplugin.dll function pro-

totypes 109
7.7.2 Initializing the GWB application110
7.7.3 Configuringandexecutingcal-

culations 111
7.7.4 Retrieving the results 112

8 Units Recognized 115

9 Graphics Output 123
9.1 Clipboard 123
9.2 Saving images 124
9.3 Font for data markers 126

10 Scatter Data 127
10.1 Act2 and Tact 128
10.2 Gtplot 129
10.3 P2plot 133
10.4 Xtplot 133

11 Multiple Analyses 135
11.1 Calculation procedure 135
11.2 Example calculation 136

12 Remote Control 139

viii

Contents

12.1 C++ program, unnamed pipes . 140
12.2 C++ program, named pipes . . . 142
12.3 Tcl script, unnamed pipes 143
12.4 Perl script, unnamed pipes . . . 144

Index 145

ix

x

Introduction

This GWB Reference Manual contains information about the command line interface
on the Command pane, the format of thermodynamic datasets, the report command,
control scripts, the plug-in feature for running the GWB applications from within your
own applications, unit conversion within the programs, and manipulating graphics
output.

The manual also describes several legacy features: text-format scatter data, using
scripts to process multiple analyses, and the remote control feature. Each of these
has been superseded by the GSS application or the plug-in feature.

This manual is intended as a supplement to the GWB manuals: GWB Essentials
Guide, GWB Reaction Modeling Guide, GWB Reactive Transport Modeling Guide,
and the GWB Command Reference.

Please consult the latter manual for specifics about the commands used to configure
the GWB programs.

1.1 Chapters in the manual
This manual contains chapters that provide details about specific features of the GWB
software package:

Command Line Interface — The features of the user interface for the Command
pane, including spelling completion, history substitution, and the built-in calculator.

ThermoDatasets—Informationabout formattingandcontentof the thermodynamic
databases that the GWB programs can read. This information is useful if you
need to modify the database, or create your own.

Surface Datasets — Information about formatting and content of surface datasets.

Report Command — Format and use of the “report” command, which returns the
results of calculations. This command provides a means of transmitting results
to control scripts and to programs running a GWB application as a plug-in or by
remote control.

Control Scripts — How to set up within GWB input file scripts containing loops,
branches, if checks, and so on.

1

GWB Reference Manual

Plug-in Feature — Details how to use the capabilities of the GWB applications
through the functions of a DLL.

Units Recognized — A complete table of the unit names to be used in the
commands.

Graphics Output — How you can manipulate the graphical output from Act2,
Tact, Gtplot, P2plot, and Xtplot.

1.2 Legacy features
The manual also desribes several legacy features of the software:

Scatter Data — The legacy method of adding scatter data to a diagram by
importing a specially formatted table from a text file. The preferred method is to
use a GSS spreadsheet as described in the GWB Essentials Guide.

Multiple Analyses — Examples of how to process a number of chemical analyses
from a spreadsheet and save the results to the spreadsheet.

Remote Control — Details the deprecated legacy method of how you can run
the GWB applications as slave processes from other programs and software
environments. This method has been replaced by the Plug-in Feature.

2

Command Line Interface

The command line interface for Rxn, Act2, Tact, SpecE8, React, Phase2, X1t, and
X2t includes a number of special features that you will find increasingly helpful as you
gain experience.

2.1 Spelling completion
Rxn, Act2, Tact, SpecE8, React, Phase2, X1t, and X2t can complete the spelling
of chemical and mineral names. The feature also completes the names of program
commands and dataset names. To complete a spelling, begin typing the name and
touch the tab (or, on most computers, escape) key. For example, if you type

1 free mole Musc[tab]

the program will complete the line

1 free mole Muscovite

When the program cannot identify a unique name from the letters provided, it will
cycle through the possible completions with subsequent tab key presses. To list the
possible completions, you can type Ctrl+D. For example, if you type

swap Al2^D

the program will respond with

Al2(OH)2++++ Al2(SO4)3 Al2(SO4)3:6H2O
swap Al2|

leaving the cursor (“j”) in position to continue the command.

2.2 History substitution
Rxn, Act2, Tact, SpecE8, React, Phase2, X1t, and X2t maintain history lists. Previously
executed commands are stored in the user’s profile directory (e.g., “c:\Documents

3

GWB Reference Manual

and Settings\ jones\Application Data\GWB”) in datasets such as “rxn_history.dat”.
If you type the command

history 10

the program lists the previous ten commands executed.
Each of the history substitution functions of the C-shell are available within the

programs. For example, typing

!!
!10
!swap
!?HCO3

causes the program to re-execute, respectively, the previous command, command
number 10, the last command that began with “swap”, and the last command that
contained the string “HCO3”.

Entries of the form

^string1^string2

replace the occurrence of “string1” with “string2” in the previous command, so that
you can avoid retyping lengthy commands after simple errors. Finally, typing

!10-15

causes the program to re-execute commands 10 through 15. This latter feature is an
extension to the C-shell protocol.

4

Command Line Interface

2.3 Special characters
The following special characters are used in the Command pane in Rxn, Act2, Tact,
SpecE8, React, Phase2, X1t, and X2t:

Ctrl+D Show choices for spelling completion of chemical names,
commands, or file names.

Ctrl+F Clear screen.
Ctrl+H Backspace over a character.
Ctrl+N Scroll forward through your command history to give the next

command in list.
Ctrl+P Scroll backward through your command history to give the previous

command in list.
Ctrl+U Backspace over entire line of input.
Ctrl+W Backspace over previous word of input.
Tab or Cycle through choices for spelling completion of chemical names,
Esc commands, or file names.
\ Continue a command from one line to the next.

2.4 Calculator
Programs Rxn, Act2, Tact, SpecE8, React, Phase2, X1t, and X2t provide an online
calculator with these functions:

+ Addition
- Subtraction

* Multiplication
/ Division
ˆ Exponentiation
() Grouping of terms
ln Natural logarithm
log Common logarithm
abs Absolute value
sqrt Square root
exp Exponentiation of e
sin, cos, Trigonometric functions
tan, cot, (arguments in radians)
sec, csc

e Value of e
pi Value of �

The online calculator is especially useful to a geochemist for converting numbers to
their logarithms and vice versa, but can be used to evaluate any numerical expression.
To use the calculator, type an expression at the prompt. Examples:

5

GWB Reference Manual

log .0003
10^-4.5
(200 - 32) * 5/9

In each case, the program evaluates the expression and returns its numerical value.

2.5 Startup files
Upon startup, Rxn looks for a file such as “rxn_startup.rxn” in a user’s profile directory
(found by typing %appdata% in the Windows Explorer Address bar, e.g.,
“c:\Documents and Settings\jones\Application Data\GWB”) and executes any com-
mands in it; theothermodelingprogramssimilarly look forfilesnamed“act2_startup.ac2”,
“spece8_startup.sp8”, and so on. These datasets provide a means for you to customize
the working environment of each program. An “act2_startup.ac2” file including the
commands

background grey
font Times

for example, will cause Act2 to produce plots with grey backgrounds and Times
lettering, unless told otherwise.

2.6 Online documentation
You can obtain online help for any of the programs on the Docs pane of the GWB
dashboard, or using the “Help” pulldown menu on the menubar of any GWB program.
The entire manual set, including this User’s Guide, can be accessed from the “Help”
pulldown.

2.7 System commands
You can execute (“fork”) DOS commands from the command lines of Rxn, Act2, Tact,
SpecE8, React, Phase2, X1t, and X2t. To do so, type a “$” followed by the desired
DOS command. Example:

$print React_output.txt

When a system command is executed, a “Command Prompt” window will appear
briefly on your screen. Due to limitations of the Windows operating system, you cannot
fork a command that requires user input, and you will not be able to see any output
(including error messages) that might be generated by the command.

6

Command Line Interface

2.8 Text size in the GWB windows
You can control the font and size of the text within the program shells for Rxn, Act2,
Tact, SpecE8, React, Phase2, X1t, and X2t by choosing the desired font and point size
from View ! Appearance. . . . "Reset" will change the point size back to the default
value.

2.9 Keyboard shortcuts
Ctrl+Break Break program (used during program execution, it stops the

calculation and returns you to the command prompt)
Ctrl+A Select all
Ctrl+C Copy
Ctrl+Shift+C Load conductivity data (SpecE8, React, Phase2, X1t, X2t)
Ctrl+F Clear screen
Ctrl+G Go, run calculation of the model
Ctrl+Shift+G Load scatter data (Act2, Tact)
Ctrl+Shift+G Go single, run on a single processor (Phase2, X1t, X2t)
Ctrl+I Go initial, calculate the initial state of the medium

(React, Phase2, X1t, X2t)
Ctrl+Shift+L Launch Gtplot, P2plot, or Xtplot to show results

(SpecE8, React, Phase2, X1t, X2t)
Ctrl+M Save image... (Act2, Tact)
Ctrl+N Add an entry to the basis
Ctrl+O Read script (open data file)
Ctrl+Q Quit the program
Ctrl+R Reset configuration
Ctrl+Shift+R Resume, restore the configuration from when the program was

last exited
Ctrl+S Save As...
Ctrl+Shift+S Load sorbing surfaces (Rxn, SpecE8, React, Phase2, X1t, X2t)
Alt+S Reset the size of the window to the default
Ctrl+T Load thermo dataset
Ctrl+Shift+T Load reaction trace (Act2, Tact)
Ctrl+U Update trace (Act2, Tact)
Ctrl+V Paste
Ctrl+Shift+W Change working directory
Ctrl+X Cut
Ctrl+Shift+X Go X, run a single scanning path (Phase2)
Ctrl+Y Redo (GSS)
Ctrl+Shift+Y Go Y, calculate the staging path (Phase2)
Ctrl+Z Undo (GSS)
F1 Open the User’s Guide most relevant to the current app

7

8

Thermo Datasets

The databases of thermodynamic data used by the programs are ascii (or character)
datasets with a “.tdat” file extension. You can edit a “.tdat” file with TEdit, the thermo
editor supplied as part of the GWB software. You can alternatively change a thermo
file using a text editor, such as “Notepad” under MS Windows.

You are free to alter existing databases such as “thermo.tdat” by changing data or
adding species, minerals, and so on. When changing a database, it is a good idea to
copy the original database to a file with a new name, and then alter that file. You can
also create your own databases using TEdit, or by following the dataset format in a
text editor.

You access a thermo dataset from a GWB app in various ways: by dragging a
“.tdat” file into the app’s window, opening the File !Open !Thermo Data. . . dialog,
or using the “read” command from the Command pane or an input script. You can
specify that specific dataset be read by default when a GWB app starts. To do
so, set the dataset as the default thermodynamic file in File !Preferences. . . (see
Thermodynamic datasets under Configuring the Programs in the GWB Essentials
Guide).

The information in this chapter applies to the “apr20” format, which is used beginning
with the GWB15 release. A description of legacy datasets appears at the end of the
chapter.

3.1 Sections in a thermodynamic dataset
Each thermo dataset is composed of the following sections:

1. Initial lines, which identify the dataset

2. Header variables

3. Elements included in the dataset

4. Basis species

5. Redox couples

6. Aqueous species

7. Free electron

9

GWB Reference Manual

8. Minerals

9. Gases

10. Oxide components

11. Virial coefficients, for datasets invoking a virial (“Pitzer” or SIT) activity model

Sections 3–10 begin with a header line such as

46 elements

which identifies the number of elements, species, and so on in each section. The
count is ignored in the current software, but very old GWB releases require it to be
accurate. A line

-end-

marks the end of each section.
You can include comment lines, identified by a “*” as the first character, freely

within the dataset. The programs read the data word-by-word, so it is not necessary
to count spaces or align columns when adding or modifying data.

3.2 Temperature expansions
A primary purpose of a thermodynamic dataset is to define how certain values—the
“header variables” and the log Ks for the various reactions considered—vary as
functions of temperature. In a dataset invoking the “Pitzer equations” or the SIT activity
model, the virial coefficients can also vary with temperature; the formalism in this case
is described in section Virial coefficients, later in this chapter.

For header variables and reaction log Ks, a temperature expansion may be given
as either a T -table or a set of polynomial coefficients. The two options are described
below.

3.2.1 T -table expansions
In the case of T -tables, the legacy method, an expansion is given as a set of eight
values, one for each of the dataset’s principal temperatures:

* log Ks
-1.6590 -1.9641 -2.4627 -3.0613
-3.8086 500.0000 500.0000 500.0000

The eight corresponding principal temperatures are given in the header of the dataset,
as described in the next section; commonly they are 0°C, 25°C, 60°C, 100°C, 150°C,
200°C, 250°C, and 300°C. The first line above is a comment added here for clarity; it
does not affect program execution.

10

Thermo Datasets

A value of “500” in a T -table, as shown above, denotes a lack of data at the
corresponding principal temperature. For log Ks, the temperature range of validity
for a T -table expansion is figured as the range of principal temperatures that map
to non-“500” values; header variables are taken to span the principal temperatures,
whether “500” entries are present or not.

In isothermal runs in which temperature is set to one of the principal temperatures,
the GWB applications take the corresponding value from each data table. In a run
at 25°C, for example, given the principal temperatures above, a GWB app takes the
second entry in each T -table in the dataset.

Where temperature differs from a principal temperature, the application fits non-“500”
values in each T -table to a polynomial

v D ao C a1T C a2T
2
C a3T

3
C a4T

4

with respect to temperature T , in °C. You can use Rxn to quickly check the polynomial
fit of the log K for any chemical species:

react Anhydrite
long
go

for example. Finally, the command

span = on

forces a GWB app to use the polynomial expansion, even when it is working at one
of the principal temperatures.

3.2.2 Polynomial expansions
Beginning with dataset format “jan19”, temperature expansions for header variables
and log Ks may alternatively be given as coefficients a through f in the polynomial

f .TK/ D aC b .TK � Tr/C c
�
T 2K � T

2
r

�
C d

�
1

TK
�
1

Tr

�
C e

�
1

T 2K
�

1

T 2r

�
C f ln

�
TK

Tr

�
where TK is absolute temperature, in Kelvin, and Tr is the reference temperature,
298.15 K.

11

GWB Reference Manual

The GWB apps distinguish data blocks of polynomial coefficients from T -tables by
the presence of the tag “a=”. For example, a block defining a polynomial expansion
might appear

* log10 K(298 K) = -1.9641
a= -1.964075 b= 0.24778 c= -0.00011177
d= -13261.67 e= 0 f= -102.477
TminK= 273.15 TmaxK= 373.15

where the first line is an optional comment. The coefficient assignments must span
two lines and be set out in order, although the sequence may be truncated. Omitting
coefficients e and f in the block above, for example, would cause them to be set to
zero.

For log Ks, an optional last line beginning with “TminK”, sets the expansion’s
temperature range of validity. Unless the “extrapolate = on” option is set, a GWB app
loads only species whose log K expansions are valid across the temperature range
of the calculation. In the example above, the species in question would be loaded
for a calculation performed at 298 K, or 25°C, but not one at 393 K, or 120°C. In
the absence of this line, the range of validity is taken as the span of the dataset’s
principal temperatures.

3.2.3 Choice of expansion
T -table expansions, the legacy method, are broadly employed in GWB databases
today. For this reason, T -tables are used to illustrate examples in the remainder of
this chapter. To visualize a data block using polynomial expansions instead, simply
replace the T -table values with two lines containing coefficients a through f , optionally
along with a third line setting out a temperature range.

In developing new databases, we suggest taking advantage of the polynomial
expansion feature, since the expansions can be imported directly from various
repositories, do not require the GWB apps to re-fit polynomials internally, and because
they allow temperature ranges of validity to be prescribed precisely.

3.3 Header data
3.3.1 Initial lines
A group of initial lines appears at the top of the dataset:

dataset of thermodynamic data for gwb programs
dataset format: apr20
activity model: debye-huckel
fugacity model: tsonopoulos

These lines identify the dataset, its format, and the activity and fugacity models to
be invoked. The current format is “apr20”; earlier formats are described in the last
section of this chapter.

12

Thermo Datasets

A database may invoke a variant of the Debye-Hückel equation as its activity model,
or be based on one formulated in terms of virial equations. Tags “debye-huckel”,
“phreeqc”, “wateq4f”, “minteq”, and “davies” identify Debye-Hückel methods, whereas
“h-m-w”, “phrqpitz” (currently equivalent to “h-m-w”), and “sit” refer to virial formulations.
The “pitzer” tag is outmoded and no longer supported.

The fugacity model is the default method for calculating gas partial pressure; it may
be “tsonopoulos”, “peng-robinson”, or “spycher-reed”.

3.3.2 Principal temperatures
Following the initial lines, each “.tdat” file contains a table of eight principal temperatures

* temperatures
0.00 25.00 60.00 100.00

150.00 200.00 250.00 300.00

whether the dataset makes use of T -table temperature expansions, or not. By loose
convention, the principal temperatures are 0°C, 25°C, 60°C, 100°C, 150°C, 200°C,
250°C, and 300°C, but you can choose other values.

3.3.3 Header variables
Followingthetemperature tableare temperatureexpansionsgivingpressure,coefficients
for calculating parameters in activity coefficient correlations, and so on, either as
T -tables or polynomials. The expansions look like:

* pressures
1.0134 1.0134 1.0134 1.0134
4.7600 15.5490 39.7760 85.9270

* debye huckel a (adh)
.4913 .5092 .5450 .5998
.6898 .8099 .9785 1.2555

...

The header variables are

Pressure, in bar,

The Debye-Hückel parameters A and B.

The various Debye-Hückel methods make use of both A and B, and the “sit” method
uses A alone. The “h-m-w” method uses A to determine the value of A� as 2:303A=3
only when its temperature expansion is defined in polynomial form; the apps calculate
A� internally when A is set as a T -table using a method valid above the freezing point
of water.

13

GWB Reference Manual

Datasets employing the “debye-huckel” activity model additionally contain
temperature expansions for

The Debye-Hückel extension PB,

Coefficients for calculating the activity coefficients for CO2 and some other
electrically neutral species, and

Coefficients for calculating the activity of water.

Temperature expansions for the header variables may be any combination of T -tables
and polynomials.

3.4 Species and reactions
Next, a dataset holds entries defining a set of aqueous species, minerals, gases, and
oxides, along with the reactions those species can undergo and the log Ks for those
reactions. In the current format, reactions can be written in terms of any species (basis
species, redox couples, aqueous species, the free electron, minerals, and gases, but
not elements or fictive oxide components) in the dataset. Reactions are set with 3
species per line, until the reaction is complete.

Temperature expansions for the logKs must be either all T -tables or all polynomials.
Whereas the two types of expansions may be mixed freely for header variables within
a given dataset, the expansions for log Ks must be of one type or the other.

3.4.1 Elements
The section begins with a list of elements from which species and so on in the database
are composed. Each element has a name, chemical symbol, and mole weight

Oxygen (O) mole wt.= 15.9994 g
Silver (Ag) mole wt.= 107.8680 g
Aluminum (Al) mole wt.= 26.9815 g
Americium (Am) mole wt.= 241.0600 g
...

3.4.2 Basis species
The follow section sets out the basis species for the dataset, beginning with water
(H2O). The entry for each species contains its charge, ion size parameter in ångstroms
(for calculating its activity coefficient), mole weight (g/mol), and elemental composition

H2O
charge= 0 ion size= 0.0 A mole wt.= 18.0152 g
2 elements in species
1.000 O 2.000 H

Ag+

14

Thermo Datasets

charge= 1 ion size= 2.5 A mole wt.= 107.8680 g
1 elements in species
1.000 Ag

Al+++
charge= 3 ion size= 9.0 A mole wt.= 26.9815 g
1 elements in species
1.000 Al

Am+++
charge= 3 ion size= 9.0 A mole wt.= 241.0600 g
1 elements in species
1.000 Am

...

The ion size parameter ao has special meaning for neutrally charged aqueous species
in the thermo dataset. For neutral species with ao � 0, the species’ activity coefficient
is set to one. When ao D �

1/2, the activity coefficient is calculated from the “CO2”
coefficients in the data table section, according to equation 8.6 in the “Geochemical
and Biogeochemical Reaction Modeling” text. When ao � �1, the logarithm of the
activity coefficient is set to the product PB � I , where PB is given by the data tables
above, and I is true ionic strength.

Whenever a database is to include protonation and deprotonation reactions, the list
of basis entries needs to include the hydrogen ion, HC, labeled as “H+”. Databases
treating redox require as part of the list either dissolved dioxygen, O2.aq/, or dissolved
dihydrogen H2.aq/; the species must be labeled, respectively, “O2(aq)” and “H2(aq)”.
The species you choose, O2.aq/ or H2.aq/, is the database’s “redox pivot”.

3.4.3 Redox couples
Redox coupling reactions for the dataset are found in the following section. The
FeCCC/FeCC couple, for example, is represented

Fe+++
charge= 3 ion size= 9.0 A mole wt.= 55.8470 g
4 species in reaction
-0.500 H2O 1.000 Fe++ 1.000 H+
0.250 O2(aq)
-10.0553 -8.4878 -6.6954 -5.0568
-3.4154 -2.0747 -0.8908 0.2679

The first two lines identify the redox species and give its charge, ion size parameter,
and mole weight. The subsequent lines show the reaction by which the redox species
dissociates. The final lines give log K values for this reaction at each of the principal
temperatures.

15

GWB Reference Manual

The manner in which you represent electron acceptance and donation in the coupling
reactions is flexible. For example, you might balance redox reactions in terms of
aqueous or gaseous dioxygen, “O2(aq)” or “O2(g)”:

Fe+++
charge= 3 ion size= 9.0 A mole wt.= 55.8470 g
4 species in reaction
-0.500 H2O 1.000 Fe++ 1.000 H+
0.250 O2(g)
-9.3901 -7.7630 -5.9309 -4.2756
-2.6496 -1.3462 -0.2258 0.8704

Or, you may set a half-cell reaction in terms of the free electron, “e-”

Fe+++
charge= 3 ion size= 9.0 A mole wt.= 55.8470 g
2 species in reaction

1.000 Fe++ -1.000 e-
13.3713 13.0127 12.5821 12.1903
11.8236 11.5751 11.4559 11.5415

Similarly, you might use “H2(aq)” or “H2(g)”.

Fe+++
charge= 3 ion size= 9.0 A mole wt.= 55.8470 g
3 species in reaction

1.000 Fe++ 1.000 H+ -0.500 H2(g)
13.6804 13.0127 12.2194 11.4873
10.7750 10.2446 9.8895 9.7741

In datasets that do not include a redox pivot within the basis, you would normally
not include redox coupling reactions. In that case, the section would look like

0 redox couples
-end-

3.4.4 Aqueous species
The next section contains the aqueous species to be considered in addition to the
basis and redox species. The entry for CaClC, for example, is

CaCl+
charge= 1 ion size= 4.0 A mole wt.= 75.5330 g
2 species in reaction

1.000 Ca++ 1.000 Cl-

16

Thermo Datasets

-0.9687 -0.7000 -0.5157 -0.4688
-0.5789 -0.8602 -1.3560 -2.2451

The entry contains a dissociation reaction for the species, and the log K values for
this reaction.

To maintain the software’s ability to couple and decouple redox reactions, you
should balance reactions in this and following sections by avoiding the use, wherever
possible, of O2.aq/, O2.g/, H2.aq/, H2.g/, and e�. To do so, you balance the reactions
in terms of species of the same oxidation state as the species in question. The entry
for H2S(aq), for example,

H2S(aq)
charge= 0 ion size= 4.0 A mole wt.= 34.0758 g
2 species in reaction

1.000 H+ 1.000 HS-
-7.6500 -6.9500 -6.6800 -6.6100
-6.7900 -7.1700 -7.7200 -8.4300

is properly balanced in terms of the redox species HS�, rather than the basis species
SO4

��.
Note that for any basis species, redox couple, or aqueous species, you may specify

a stoichiometric formula

Acetic acid formula= HCH3COO
charge= 0 ion size= 4.0 A mole wt.= 60.0524 g
2 species in reaction

1.000 H+ 1.000 CH3COO-
-4.7743 -4.7563 -4.8079 -4.9640
-5.3017 -5.8241 500.0000 500.0000

by appending a “formula=” field to the species’ name.

3.4.5 Free electron
The half-cell reaction representing take-up of the free electron is typically in terms of
either “O2(aq)” or “O2(g)”:

e-
charge= -1 ion size= 0.0 A mole wt.= 0.0000 g
3 species in reaction

0.500 H2O -0.250 O2(g) -1.000 H+
22.7614 20.7757 18.5130 16.4658
14.4732 12.9213 11.6817 10.6711

or in terms of “H2(aq)” or “H2(g)”:

17

GWB Reference Manual

e-
charge= -1 ion size= 0.0 A mole wt.= 0.0000 g
2 species in reaction

0.500 H2(g) -1.000 H+
-0.3091 0.0000 0.3627 0.7030
1.0486 1.3305 1.5663 1.7673

3.4.6 Minerals
Minerals to be included in the database are found in the next section. The entry for
the sodium feldspar albite looks like

Albite type= feldspar
formula= NaAlSi3O8
mole vol.= 100.250 cc mole wt.= 262.2230 g
5 species in reaction

2.000 H2O 1.000 Na+ 1.000 Al+++
3.000 SiO2(aq) -4.000 H+

3.9160 3.0973 1.9915 0.9454
-0.0499 -0.8183 -1.5319 -2.5197

The initial lines in the entry give the mineral’s name, type, formula, and molar volume
(cm3/mol) and weight (g/mol). The remaining lines give the reaction by which the
mineral decomposes and the corresponding logK values at the principal temperatures.
As with the aqueous species, the reaction should be written without change in oxidation
state, if possible.

3.4.7 Gases
The next section contains the gases considered. The entry for CO2(g), for example, is

CO2(g)
mole wt.= 44.0098 g
chi= -1430.87 3.598 -.00227376 3.47644 -.0104247 8.46271e-6
Pcrit= 73.8 bar Tcrit= 304.1 K omega= .239
3 species in reaction
-1.000 H2O 1.000 H+ 1.000 HCO3-

-7.6827 -7.8184 -8.0628 -8.3849
-8.8297 -9.3208 -9.8841 -10.6132

The first lines give the name and mole weight (g/mol) of the gas.
The next two lines, which are optional and can appear in either order, hold data for

calculating fugacity coefficients. A line starting with “chi=” gives the factors a through

18

Thermo Datasets

f used in the Spycher-Reed method to calculate the fugacity coefficient '

ln' D
�
a

T 2K
C

b

TK
C c

�
P C

�
d

T 2K
C

e

TK
C f

�
P 2

2
(3.1)

as a function of absolute temperature TK , and pressure P , in bars.
A line beginning “Pcrit=” gives the data needed to evaluate the Tsonopoulos and

Peng-Robinson pressure models: the critical point pressure Pcr and temperature Tcr ,
and the acentric factor !. For polar or hydrogen bonding gases, like H2O(g), the line
may be extended to include factors a and b

Pcrit= 221.2 bar Tcrit= 647.3 K omega= .344 a= -.0109 b= 0.0

used for such gases by the Tsonopoulos model.
As before, the remaining lines give the gas’ dissociation reaction and corresponding

log K values.

3.4.8 Oxide components
The oxide components are used as reactants in simulations that, for example, model
the dissolution of a glass phase. An example is

Al2O3
mole wt.= 101.9616 g
3 species in reaction
-6.000 H+ 2.000 Al+++ 3.000 H2O

Since components are fictive entities used to describe bulk composition, oxides have
no thermodynamic stability and hence there is no expansion for log K.

3.5 Virial coefficients
The “Pitzer” and SIT activity models commonly used in geochemistry to describe
chemical potentials in concentrated solutions rely on virial coefficients. Virial coefficients
account for energetic interactions among aqueous species taken two and three at a
time—i.e., species pairs and triplets.

For this reason, datasets calling on the “h-m-w”, “phrqpitz”, and “sit” activity models
contain a final section defining virial coefficients for the species carried in the dataset;
this last section is omitted from datasets employing the other activity models.

For the “h-m-w” (and “phrqpitz”) activity model, the section is made up of four
segments of virial coefficients:

Values of ˇ.0/, ˇ.1/, ˇ.2/, c� , ˛.1/, and ˛.2/ for cation-anion pairs,

Values of � for anion-anion pairs,

Values of � for ion-neutral species pairs, and

19

GWB Reference Manual

Values of for species triplets.

In datasets calling the “sit” model, the section is made up of two segments:

Values of " for cation-anion pairs, and

Values of " for ion-neutral species pairs.

" is normally invariant with respect to ionic strength, but you can account for its
variation by specifying two values "1 and "2, in which case " D "1 C "2 � log I .

The data format for a pair and triplet depends on the type of temperature expansion
chosen for the entry.

3.5.1 Temperature expansions
Virial coefficients ˇ.0/, ˇ.1/, ˇ.2/, c� , � , �, and , as well as ", "1, and "2, vary with
temperature and hence carry temperature expansions in a dataset. Coefficients ˛.1/
and ˛.2/ are invariant with temperature.

The GWB apps recognize temperature expansions for virial coefficients in two similar
forms: a legacy polynomial, and the polynomial used to expand header variables and
log Ks, as described already. The two types of temperature expansions may be mixed
freely within a given dataset, but only a single type may be used within the data block
for a given pair or triplet of species.

3.5.1.1 Legacy temperature expansion
The legacy temperature expansion casts a virial coefficient’s variation according to
the polynomial

ˇ D ˇ25 C c1 .TK � Tr/C c2

�
1

TK
�
1

Tr

�
C c3 ln

�
TK

Tr

�
C c4

�
T 2K � T

2
r

�
C c5

�
1

T 2K
�

1

T 2r

�
Here, ˇ represents the virial coefficient in question, ˇ25 is its value at 25°C, TK is
absolute temperature, and the reference temperature Tr is 298.15 K.

Each coefficient is defined on a line containing at a minimum the value at 25°C and
optionally one or more of the polynomial coefficients c1 � c5. Any omitted entries for
the polynomial are treated as zero values. Hence, a line containing ˇ25 and c1 defines
the virial coefficient in terms of its 25°C value and its first temperature derivative.

3.5.1.2 New temperature expansion
The temperature expansion used for header variables and log Ks beginning with
dataset format “jan19” may also be used to describe the behavior of virial coefficients.
In this case, an arbitrary coefficient ˇ is given by coefficients a through f according to

ˇ D aC b .TK � Tr/C c
�
T 2K � T

2
r

�
C d

�
1

TK
�
1

Tr

�
C e

�
1

T 2K
�

1

T 2r

�
C f ln

�
TK

Tr

�

20

Thermo Datasets

where TK is Kelvin temperature, and the reference temperature Tr is 298.15 K. As
you can see, the new and legacy expansions differ only in the order in which the
terms are presented and the labels assigned to the coefficients.

The coefficients a through f are presented in order. The series may be truncated,
in which case any remaining coefficients are carried as zero. Coefficient a is required,
and a and b must be given at a minimum to set variation with temperature.

3.5.1.3 Temperature range of validity
A temperature range of validity may optionally be set for each species pair and triplet,
regardless of the temperature expansion chosen. If no range is set, the span of the
principal temperatures is assumed.

A GWB app loads only virial coefficients for pair or triplets whose range of validity
spans the calculation’s temperature range, unless the “extrapolate = on” command
is given. If a pair’s or triplet’s coefficients are not loaded, the app gives a warning
message and continues.

3.5.2 Data blocks for species pairs and triplets
A GWB app distinguishes virial coefficients expanded in terms of the new, rather than
legacy polynomial by checking for the tag “a=” on a data line.

3.5.2.1 Legacy temperature expansion for Pitzer coefficients
An example block for the cation-anion pair NaC-Cl� in which the virial coefficients are
expanded in terms of the legacy polynomial is

Na+ Cl-
beta0 = .07558 -.06352 9931 37.47 2e-5 -508663
beta1 = .2765 -.1714 27034 102.3 6e-5 -1335514
beta2 = 0.0
cphi = .0015267 .03114 -4635 -18.1 -1e-5 221646.
alpha1 = 2.0
alpha2 = 0.0
TminK= 273.15 TmaxK= 480.15

In this case, the value of ˇ.0/ at 25°C is 0.07558, and the value’s temperature variation
is defined by polynomial coefficients c1–c5 of �.06352, 9931, 37.47, 2�10�5, and
-508663.

A block for the NaC-KC-Cl� triplet in which is expanded in terms of the legacy
polynomial is

Na+ K+ Cl-
psi = -.001800 2.047e-5
TminK= 273.15 TmaxK= 393.15

3.5.2.2 New temperature expansion for Pitzer coefficients
An example of the block for the NaC-Cl� pair, this time expanded in terms of the new
polynomial form is

21

GWB Reference Manual

Na+ Cl-
beta0 a= .07558 b= -.06352 c= 2e-5 d= 9931 e= -508663 f= 37.47
beta1 a= .2765 b= -.1714 c= 6e-5 d= 27034 e= -1335514 f= 102.3
beta2 a= 0.0
cphi a= .0015267 b= .03114 c= -1-5 d= -4635 e= 221646 f= -18.1
alpha1= 2.0
alpha2= 0.0
TminK= 273.15 TmaxK= 480.15

The coefficients a–f defining ˇ.0/ in the example are .07558, �.0635, 2�10�5, 9931,
�508663, and 37.47.

Similarly, a block for the NaC-KC-Cl� triplet is

Na+ K+ Cl-
psi a= -.001800 b= 2.047e-5
TminK= 273.15 TmaxK= 393.15

3.5.2.3 New temperature expansion for SIT coefficients
An example of the block for the NaC-Cl� pair in the SIT model, expanded in terms of
the new polynomial form, is

Na+ Cl-
epsilon a= .03 b= -.052 c= 1e-5 d= 8734 e= -453573 f= 22.13
TminK= 273.15 TmaxK= 353.15

To account for variation of " with ionic strength, include a second coefficient "2:

Na+ NO3-
epsilon1 a= -.049
epsilon2 a= .044
TminK= 273.15 TmaxK= 323.15

3.6 Legacy dataset formats
Five legacy formats for the thermo databases may be used with current releases of
the software. The legacy formats are labeled “jan19”, “jul17”, “oct13”, “oct94” and
“feb94”. The first four formats are preferred for “h-m-w” and “phrqpitz” activity models,
and the latter accepts the outmoded “pitzer” model.

GWB release 14 recognizes “jan19” and earlier formats, whereas Release 12 works
only with“jul17” and earlier formats, and Releases 11 and 10 work only with formats
“oct13” and before. The differences between the legacy and current formats are
summarized below.

22

Thermo Datasets

3.6.1 Temperature expansions
Dataset formats “jul17” and earlier support only T -table temperature expansions for
header variables and log Ks, and the legacy polynomial for virial coefficients. Datasets
in these formats additionally do not recognize temperature ranges of validity for virial
coefficients.

3.6.2 Initial lines
Datasets in formats “oct13” and earlier do not support partial pressure calculations
and therefore do not contain an initial line specifying the fugacity model.

3.6.3 SIT activity model
Datasets in formats “jan19” and earlier cannot invoke the “sit” activity model introduced
in Release 15.

3.6.4 Header variables
Thermo datasets in “jul17” and earlier formats include sets of header variables for
calculating activities of CO2 and some other neutral species, and for H2O, regardless
of the dataset’s activity model.

Datasets in the “oct94” and “feb94” formats include data blocks for four header
variables

The log K values for the half-cell reaction

2 H2O � O2.g/C 4 HC C 4 e�

and

The log K values for the solubilities of the gases O2(g), H2(g), and N2(g) although
only the values for O2(g) were ever used by the software

These four header variables are not carried forward to later formats

3.6.5 Arbitrary reaction definition
Datasets in “jan19” and earlier formats required reactions to be written in terms of
only basis species, redox couples, the aqueous or gaseous form of the redox pivot,
or the free electron.

3.6.6 Redox couples
Redox coupling reactions in “oct94” and “feb94” format datasets can be balanced only
in terms of “O2(aq)” as the electron acceptor.

3.6.7 Free electron
Databases in the “oct94” and “feb94” format do not include a reaction representing
take-up of the free electron. Instead, the software constructs the reaction using the
header variable for the half-cell reaction mentioned above.

23

GWB Reference Manual

3.6.8 Formulae for aqueous species
Databases in “oct13” and earlier formats do not include stoichiometric formulae for
the aqueous species.

3.6.9 Fugacity coefficients
Beginning with the “jul17” format, gas species blocks can contain an optional line giving
the factors needed to calculate fugacity coefficients by the Spycher-Reed equation, as
well as a line holding values used by the Tsonopoulos and Peng-Robinson models.

24

Surface Datasets

Databases of surface reactions, which have a “.sdat” file extension, are similar to
the thermodynamic datasets described in the previous chapter. You access a surface
dataset from a GWB app by dragging a “.sdat” file into the app’s window, opening
the File!Open!Sorbing Surfaces. . . dialog, or using the “surface_data” command
from the Command pane or an input script. You can load as many unique surface
datasets into an app as you’d like.

The information in this chapter applies to the “may20” format, which is used beginning
with the GWB15 release. A description of legacy datasets appears at the end of the
chapter.

4.1 Sections in a surface dataset
Each surface dataset is composed of some or all of the following sections:

1. Initial lines, which identify the dataset

2. Basis species

3. Sorbing minerals

4. Surface species

Sections 2–4 begin with a header line such as

2 basis species

which identifies the number of surface basis species, sorbing minerals, and surface
species in each section. Depending on the surface model, one or more such sections
are omitted, as described below. A line

-end-

marks the end of each section.
As with thermo datasets, you can include comment lines freely within the dataset.

25

GWB Reference Manual

4.2 Temperature expansions
Beginning with dataset format “may20”, you can define how log Ks for the reactions
considered in two-layer, triple-layer, CD-MUSIC, and Langmuir datasets vary as
functions of temperature using the polynomial expansion previously described for log
Ks in the thermo dataset

f .TK/ D aC b .TK � Tr/C c
�
T 2K � T

2
r

�
C d

�
1

TK
�
1

Tr

�
C e

�
1

T 2K
�

1

T 2r

�
C f ln

�
TK

Tr

�
where TK is absolute temperature, in Kelvin, and Tr is the reference temperature,
298.15 K.

For example, a block defining a polynomial expansion might appear

log K a= -1.964075 b= 0.24778 c= -0.00011177 d= -13261.67 e= 0 f= -102.477
TminK= 273.15 TmaxK= 323.15

The coefficients must be set in order, although the sequence may be truncated
after the second coefficient. Omitting coefficients e and f in the block above, for
example, would cause them to be set to zero. Unlike in thermo datasets, the coefficient
assignments must span a single line. In practice, data is seldom available to constrain
more than the first coefficient. There is no provision for describing temperature variation
of coefficients in the ion-exchange, Kd , and Freundlich models.

4.3 Header data
4.3.1 Initial lines
A group of initial lines appears at the top of the dataset:

Dataset of surface reactions for gwb programs
Dataset format: may20
Surface type: HFO
Model type: two-layer
Surface potential: variable (specify a value in mV to set a constant potential model)
Surface capacitance: variable (specify a value in F/m2 to set a constant capacitance model)
Thermo dataset: thermo.tdat

The first three lines identify the dataset, its format, and its label, to be used for input
and output. A unique label is required for each surface in a calculation.

The fourth line specifies the surface model to invoke. The model type may be
“two-layer”, “three-layer”, “cd-music”, “Langmuir”, “ion-exchange”, “Kd”, or “Freundlich”.

For the first four model types listed, you may optionally append a convention for
polydentate complexes: “stoichiometric”, “davis-leckie”, “hiemstra-vanriemsdijk” (the
default), or “appelo-postma” (see Polydentate sorption in the GWB Essentials Guide)

26

Surface Datasets

Model type: cd-music hiemstra-vanriemsdijk

For ion-exchange datasets, similarly, specify the activity convention for the sorbed
sites: “Gaines-Thomas” (the default), “Vanselow”, or “Gapon”. You must balance
reactions accordingly (see Ion exchange in the GWB Essentials Guide)

Model type: ion-exchange Gapon

In the two-layer model, the Surface potential and Surface capacitance lines are
set to “variable” to make the programs use the full diffuse-layer model. You can
alternatively set the former to a numerical value (in mV) to implement the constant
potential model (see Constant potential model in the GWB Essentials Guide)

Surface potential: 0
Surface capacitance: variable

Surface capacitance can similarly be set (in F/m2) to implement the constant capacitance
model (see Constant capacitance model in the GWB Essentials Guide)

Surface potential: variable
Surface capacitance: 0.9

In the triple-layer and CD-MUSIC models, set two capacitances C1 and C2

Surface potential: n/a
Surface capacitance: 1.1 .2

For all other surface models, use “n/a”

Surface potential: n/a
Surface capacitance: n/a

The last header line identifies in TEdit the thermo dataset from which to draw species
to include in the surface dataset. When a surface dataset is loaded in a calculation,
either the specified thermo dataset or one that is compatible (i.e., one that includes all
the necessary species, uses the same spellings, and so on) should also be loaded.

4.4 Species and reactions
Next, a dataset holds entries defining a set of surface species, the reactions they
undergo, logKs or other coefficients describing their stabilities, and perhaps information
about the minerals containing the sorbing surfaces.

27

GWB Reference Manual

4.4.1 Basis species
The entry for a basis species, where appropriate, includes its charge, mole weight
(g/mol), and elemental composition. Descriptions for the various surface models follow.

In the surface complexation models (two-layer, triple-layer, and CD-MUSIC models),
you specify one or more basis species representing the sorbing sites. The species
represents the site in its uncomplexed state and may be uncharged, as is common in
two-layer and triple-layer models, or charged, as is common in the CD-MUSIC model.

>(s)FeOH
charge= 0 mole wt.= 72.8543 g
3 elements in species

1.000 Fe 1.000 H 1.000 O

>(w)FeOH
charge= 0 mole wt.= 72.8543 g
3 elements in species

1.000 Fe 1.000 H 1.000 O

In the Langmuir isotherm, specify a single sorbing site per dataset. Most commonly,
the site is uncharged, carries no mass, and is not composed of any elements.

>L:
charge= 0 mole wt.= 0.0000 g
0 elements in species

In the ion-exchange model, set a single basis species, which is the surface complex
for one of the exchanging ions. It is customary to choose a monovalent ion for the
basis species. The site should be uncharged, and the “sorbed species” must be a
basis entry in the thermo dataset in use.

>X:Na
charge= 0 mole wt.= 22.9898 g
sorbed species= Na+
1 elements in species

1.000 Na

Kd and Freundlich model datasets do not contain a Basis species because there
is no mass balance on sorbing sites.

4.4.2 Sorbing minerals
In the surface complexation datasets, identify one or more sorbing minerals. For each,
specify its specific surface area (m2/g) and the density of each sorbing site. Site
density can be specified in moles sites per mole mineral, as in FeOH.sdat

Fe(OH)3(ppd)
surface area= 600.0000 m2/g

28

Surface Datasets

2 sorption sites
>(s)FeOH site density= .0050 mol/mol mineral
>(w)FeOH site density= .2000 mol/mol mineral

or sites per square nanometer, as in Goethite_Se.sdat

Goethite
surface area= 52.0000 m2/g
1 sorption sites
>FeOH site density= 7.0000 sites/nm2

Datasets for the other surface models do not include a Sorbing minerals section.
Note, the sorption capacity and exchange capacity of Langmuir and ion-exchange
sites, respectively, are set in the apps.

4.4.3 Surface species
The entry for a surface species might include a description of charge, or change in
charge, on one or more planes, as well as the mole weight (g/mol) for the species. It
additionally includes the reaction by which the species dissociates to basis, redox,
or aqueous species in the specified thermo dataset, as well as the sorbing site, if
applicable. Finally, the entry includes the stability for the specified reaction. Descriptions
for the various surface models follow.

In the two-layer surface complexation model, set a single value for charge of the
surface complex and set the log K temperature expansion described above:

>(w)FeO-
charge= -1 mole wt.= 71.8464 g
2 species in reaction

1.000 >(w)FeOH -1.000 H+
log K a= 8.9300 b= 0.0

>(w)FeOH2+
charge= 1 mole wt.= 73.8622 g
2 species in reaction

1.000 >(w)FeOH 1.000 H+
log K a= -7.2900 b= 0.0

>(s)FeOPb+
charge= 1 mole wt.= 279.0464 g
3 species in reaction

1.000 >(s)FeOH -1.000 H+ 1.000 Pb++
log K a= -4.6500 b= 0.0

The triple-layer model is similar to the two-layer model, except the charge of a
complex is attributed either to the to the 0-plane, ˇ-plane, or both. For example

29

GWB Reference Manual

>FeOH2+
charge0= 1 chargeb= 0 mole wt.= 73.8622 g
2 species in reaction

1.000 >FeOH 1.000 H+
log K a= -5.8000 b= 0.0

>FeO-:Na+
charge0= -1 chargeb= 1 mole wt.= 94.8362 g
3 species in reaction

1.000 >FeOH 1.000 Na+ -1.000 H+
log K a= 8.8000 b= 0.0

The CD-MUSIC model is similar to the triple-layer model in that charge is attributed
to multiple planes. In this case, specify the changes in charge �zo, �z1, and �z2 for
each of the planes 0, ˇ, and d , respectively:

>FeOH2+0.5
charge= .5 mole wt.= 73.8622 g
deltaz0= -1 deltaz1= 0 deltaz2= 0
2 species in reaction

1.000 >FeOH-0.5 1.000 H+
log K a= -9.2000 b= 0.0

>FeOHNa+0.5
charge= .5 mole wt.= 95.8441 g
deltaz0= 0 deltaz1= 0 deltaz2= -1
2 species in reaction

1.000 >FeOH-0.5 1.000 Na+
log K a= 1.0000 b= 0.0

Recall that since GWB datasets describe dissociation, a reaction’s log K as well as
its �z values are negated relative to the corresponding association reaction. Note, in
modern usage, �z2 is commonly taken to be 0.

In the Langmuir model, the surface species are complexes of the basis species with
ions in solution. Enter equilibrium constants for dissociation reactions in the same
manner as the two-layer, triple-layer, and CD-MUSIC surface complexes.

>L:Ca++
charge= 2 mole wt.= 40.0800 g
2 species in reaction

1.000 >L: 1.000 Ca++
log K a= -2.1000 b= 0.0

30

Surface Datasets

In the ion-exchange model, the surface species are formed by ion exchange with
the basis species. Enter selectivity coefficients as linear, not logarithmic values (they
are converted to log values internally in the program).

The selectivity coefficients here refer to mass action expressions for the exchange
reaction written in terms of the ion activities, rather than molalities. To be precise,
therefore, data from the literature presented in the molal convention should be corrected
according to the ions’ activity coefficients.

Be sure your selectivity coefficients correspond to the reaction specified. Selectivity
coefficients reported in the literature may be normalized to a unit charge equivalent
of exchange sites.

The Gaines-Thomas convention holds that the activity of the sorbed ion is its
equivalent fraction of the sorbing sites. You balance reactions on the exchanging ions:

>X2:Ca
charge= 0 mole wt.= 40.0800 g
3 species in reaction

2.000 >X:Na 1.000 Ca++ -2.000 Na+
Selectivity coefficient= .0300

The Vanselow convention is the same, except that the sorbed ion activity is the molar
fraction of the sorbing sites.

In the Gapon convention, you balance reactions on the sites rather than ions:

>X:Ca(0.5)
charge= 0 mole wt.= 20.0400 g
3 species in reaction

1.000 >X:Na .500 Ca++ -1.000 Na+
Selectivity coefficient= .0300

The sorbed ion activities can be expressed as either equivalent or molar fractions, since
the corresponding reaction coefficients are the same on both sides of the reaction.

In Kd model datasets, surface species are formed by sorption of ions. Enter Kd ’s
as linear, not logarithmic, values:

>Ni++
charge= 2 mole wt.= 58.7100 g
1 species in reaction

1.000 Ni++
Kd= .050

The Kd values are presented here in units of mol/g solid. A Kd value represents the
ratio of an ion’s sorbed concentration in mol/g solid to its free activity (not molality) in
solution. In taking data from the literature, be careful to note the units used and make
the appropriate conversion, accounting as necessary for the ion’s activity coefficient
and perhaps the extent of complexation in solution.

31

GWB Reference Manual

In Freundlich model datasets, surface species are formed by sorption of ions. Enter
Kf ’s as linear, not logarithmic values:

>Pb++
charge= 2 mole wt.= 207.2000 g
1 species in reaction

1.000 Pb++
Kf= .0025 nf= .800

The Kf values are presented here in units of mol/g solid. A Kf value represents the
ratio of an ion’s sorbed concentration in mol/g solid to its free activity (not molality)
in solution, the latter raised to the Freundlich exponent, nf . In taking data from the
literature, be careful to note the units used and make the appropriate conversion,
accounting as necessary for the ion’s activity coefficient and perhaps the extent of
complexation in solution.

4.5 Legacy dataset formats
Five legacy formats for the thermo databases may be used with current releases of
the software. The legacy formats are labeled “apr18”, “jan14”, “dec99”, “jun95”, and
“jan94”.

GWB release 15 recognizes “may20” and earlier formats, whereas Release 12
works only with “jan14” and earlier formats. The differences between the legacy and
current formats are summarized below.

4.5.1 Thermo data line
Dataset formats “dec99” and earlier do not include a line specifying the thermo dataset
from which to draw species for the surface reactions, for use in the TEdit app.

4.5.2 Three-layer models
Dataset formats “jan14” and earlier do not support the triple-layer or CD-MUSIC
surface models.

4.5.3 Polydentate sorption
Dataset formats “jan14” and earlier do not support specification of different conventions
for polydentate complexes.

4.5.4 End line
Dataset formats “dec99” and earlier do not include an extra -end- line before the basis
species section.

4.5.5 Charged uncomplexed sites
Dataset formats “jan14” and earlier do not support surface sites with non-zero charge.

32

Surface Datasets

4.5.6 Site density units
Dataset formats “jan14” and earlier do not support specification of site density in
sites/nm2 units.

4.5.7 Arbitrary reaction definition
Dataset formats “apr18” and earlier support reactions for two-layer, triple-layer, and
CD-MUSIC complexes written in terms of the sorbing sites (surface basis species) as
well as basis, redox, and aqueous species in the thermo dataset. Reactions cannot be
written in terms of other surface species, such as protonated or deprotonated forms
of the sorbing site.

4.5.8 Temperature expansions
Dataset formats “apr18” and earlier support specifying a log K value and temperature
derivative at 25°C for the two-layer, triple-layer, CD-MUSIC, and Langmuir models.
They do not support the log K temperature polynomial nor the temperature range of
validity allowed in the “may20” format.

33

34

Report Command

The “report” command returns the results calculated by a GWB program. The command
is available in programs Rxn, SpecE8, React, Phase2, X1t, and X2t. After you have
run the program (i.e., after you have selected Run ! Go, or otherwise triggered the
calculation), you can use the “report” command to retrieve the program results.

You can use the “report” command from the Command pane as a way to explore the
calculation results interactively. More commonly, the command is used when writing
control scripts (see Control Scripts), or when invoking the programs with the plug-in
feature (see Plug-in Feature) or by remote control (see Remote Control), as a method
of transmitting calculation results to the script or controlling program.

You might, for example, type

report pH

on React’s Command pane. The program would respond with the most recently
calculated value of pH. The programs recognize a number of “report” command
keywords, like “pH” in the example above; the keywords are listed in the table at the
end of this chapter. Typing the command

report options

returns a list of available keywords.
Depending on the keyword, the “report” command may return a single value, several

values, or a vector of values. You control the command’s response using arguments
specific to a keyword; arguments are shown in boldface in the table at the end of the
chapter. The “concentration” keyword is a good example of using arguments:

35

GWB Reference Manual

concentration <argument(s)> <name(s) | index> . . .
argument: related arguments:
original <fluid | system | sorbed | stagnant>
current <fluid | system | sorbed>
aqueous
surf_species
elements <fluid | system | sorbed | stagnant>
minerals

Selecting from the list of types, you can enter a command such as

report concentration aqueous

which will cause the program to return a vector of the concentrations of aqueous
species in the system. The command

report aqueous

displays the names of those species.
As a second example, typing

report concentration original fluid

gives a vector of the concentrations of the original basis components in the fluid, the
names of which are returned by the command

report basis original

Notably, the first example above returns concentrations of free species, whereas the
second example returns the total or bulk concentrations of the components that make
up the solution.

Continuing the first example, you can request the concentration of an individual
species by name

report concentration aqueous Na+

or by vector position

report concentration aqueous 12

The GWB applications index vectors by offset, so the first entry is identified as "0",
the second is "1", and so on.

You can stack arguments on a command line, so typing

36

Report Command

report concentration aqueous H+ Na+ Cl-

prompts the program to return three values, one for each of the species listed. Typing

report concentration aqueous 0 1 2

also returns three values, for the first three entries in the vector of aqueous species.
In a client application, you may wish to work in terms of vector indices. The number

of aqueous species, for example, is returned by the command

report naqueous

By writing a loop in which a counter i varies from zero to the number of aqueous
species, less one, you can use the command

report aqueous i
report concentration aqueous i

to retrieve the names and concentrations of the aqueous species, one at a time.
When using the “report” command, remember to enclose multi-word arguments,

such as species names, in quotes, just as you would in any GWB command. For
example, the command

report mass_reacted "Albite low"

gives the expected result.
The “report” command normally returns values in terms of a default unit set for

each keyword, as shown in the table at the end of this chapter. To find the default
unit for a given “report” keyword, type a command of the form

report get_default_units concentration

In this case, the application will respond that results for concentration are reported
by default in molal units.

You may nonetheless request results in any of the units listed in the Units Recognized
chapter in this guide. To do so, affix the unit name to the end of a “report” command.
For example,

report concentration aqueous mmol/kg

returns the concentration of each aqueous species, in units of mmol/kg. If the unit
conversion fails, the program will respond with “ANULL”, the flag for an undefined
value.

37

GWB Reference Manual

You can use the “set_units” keyword to set the application to return results invariably
in terms of a specific unit. To override the default units in this way, enter a command
such as

report set_units "mmol/kg"

Having issued this command, unit conversion for commands such as “report
temperature” will fail until you have unset the option. To return to default behavior,
enter

report set_units ?

The command

report get_units

shows the current setting for the overriding unit, if one has been set.
To change the number of significant digits in the numerical results returned by the

“report” command, type, for example

report set_digits 8

By default, the applications return four significant digits.
In X1t, you can specify the node of interest by typing

report set_node 5

for example. The command above tells the program to return values associated with
the node with index 5. Similarly, in X2t, you might type

report set_node 8 8

giving first an x-direction, then y-direction index. Node indices vary from 0 to the total
number of nodes, less one. Indexing starts in the bottom left corner of the domain and
increases from left to right in the bottom row, then the next highest row, and so on.

Finally, note that a subset of keywords gives access to information even if the run is
not complete. The “database” keyword provides information about the thermo dataset
in use, while “configuration” and “constraints” give information about how the user has
configured the basis.

38

Report Command

(This page left blank.)

39

GWB Reference Manual

Keyword Arguments Description
activity <aqueous | surf_species>

<name(s) | index>...
Species’ activities

alkalinity Carbonate alkalinity

aqueous <index>... Names of aqueous species

basis <original | current> <index>... Names of basis entries

biomass <reactant(s) | index>... Biomass concentration

boltzman <surf_species | index>... Boltzman factors for surface
species

bulk_volume Bulk volume of nodal block

cat_area <reactant(s) | index>... Areas of catalyzing surfaces

charge <type> <name(s) | index>...
original | current | aqueous |
surf_species

Charge on components
or species

chlorinity Chlorinity

colloids <index>... Names of mobile colloids

coef_dispersion Coefficient of dispersion

concentration <type> <name(s) | index>...
original <fluid | system | rock
| sorbed | stagnant | colloid>

current <fluid | system | rock
| sorbed | stagnant | colloid>

elements <fluid | system | rock
| sorbed | stagnant | colloid>

aqueous
surf_species
minerals <equilibrium | kinetic
| both>

Concentration of components,
aqueous or surface species, min-
erals, or elements

configuration <names(s) | index>...
<basis | swap | type | unit
| scale | as>

Basis configuration, including
entry, swap species, constraint
type, unit, scale, and “as” unit

constraints <name(s) | index>... Values constraining each basis
entry

contact_area <reactant(s) | index>... Contact areas for kinetic gases

couples <index>... Names of redox couples

database <elements | basis | redox
| aqueous | electron | mineral
| gas | oxide>

Names of entries in the thermo
dataset, whether included in the
current simulation or not

40

Report Command

Default units Return type Rxn SpecE8 React X1t X2t
double 3 3 3 3

mg/kg sol’n as CaCO3 double 3 3 3 3

strings 3 3 3 3

strings 3 3 3 3

mg/kg double 3 3 3

double 3 3 3 3

cm3 double 3 3 3 3

cm2 double 3 3 3

double 3 3 3 3

molal double 3 3 3 3

strings 3 3 3 3

cm2/s double 3

molal double 3 3 3 3

strings 3 3

double 3 3

cm2 double 3 3 3

strings 3 3 3 3

strings 3 3 3 3 3

41

GWB Reference Manual

Keyword Arguments Description
discharge Specific discharge

Deltat Length of current time step

EC Electrical conductivity

efflux <name(s) | index>... The net flux of original basis
components out of the domain

Eh <system | couples>
<name(s) | index>...

The system Eh or Nernst Eh
values for redox couples

elements <index>... Names of elements

equil_eqn Equilibrium equation as a text
string

equil_favors Whether reaction products or
reactants are favored

equil_temp Equilibrium temperature

exchange_capacity<surface_type(s) | index>... Capacity of ion exchange surface

freeflowing Volume of free-flowing zone in
nodal block

FA <reactant(s) | index>... Kinetic factor for electon
acceptance by microbes

FD <reactant(s) | index>... Kinetic factor for electon
donation by microbes

fugacity <gas(es) | index>... Gas fugacities

gamma <aqueous | surf_species>
<name(s) | index>...

Species’ activity coefficients

gas_pressure <gas(es) | index>... Gas partial pressures

gases <index>... Names of gases

get_default_units <keyword> Default unit for command

get_units Current unit, if set

hardness Hardness

hardness_carb Carbonate

hardness_ncarb Non-carbonate

hyd_pot Hydraulic potential

imbalance Charge imbalance

42

Report Command

Default units Return type Rxn SpecE8 React X1t X2t
cm3/cm2 s double 3 3

s double 3 3 3

�S/cm or umho/cm double 3 3 3 3

moles double 3 3

volts double 3 3 3 3

strings 3 3 3 3

string 3

string 3

string 3

eq double 3 3 3 3

cm3 double 3 3 3 3

double 3 3 3

double 3 3 3

double 3 3 3 3

double 3 3 3 3

bar double 3 3 3 3

strings 3 3 3 3

string 3 3 3 3 3

string 3 3 3 3 3

mg/kg sol’n as CaCO3 double 3 3 3 3

mg/kg sol’n as CaCO3 double 3 3 3 3

mg/kg sol’n as CaCO3 double 3 3 3 3

bar double 3 3

eq/kg double 3 3 3 3

43

GWB Reference Manual

Keyword Arguments Description
imbalance_error Error percentage

inert_volume Inert volume in system

influx <name(s) | index>... The net flux of original basis
components into the domain

IS or Tionst System ionic strength

isotopes <symbols> Names of or symbols
for isotope systems

iterations Number of iterations required for
Newton-Raphson to converge

Kd <name(s) | index>... Net Kd for sorption of original
basis entries onto all surfaces

logfO2 Log fugacity of O2

logk Log equilibrium constant

logks List of log K ’s at principle
temperatures

logQoverK or SI <minerals | reactants>
<name(s) | index>...

Saturation index for minerals
or reactants

mass <type> <name(s) | index>...
original <fluid | system | rock
| sorbed | stagnant | colloid>

current <fluid | system | rock
| sorbed | stagnant | colloid>

elements <fluid | system | rock
| sorbed | stagnant | colloid>

aqueous
surf_species
minerals <equilibrium | kinetic
| both>

Mass of components, aqueous
or surface species, minerals, or
elements

mass_reacted <reactant(s) | index>... Mass of a reactant that has
reacted

mass_remaining <reactant(s) | index>... Mass of a reactant remaining to
react

minerals <equilibrium | kinetic
| both | all> <index>...

Names of minerals

mineral_mass Massofminerals,systemorblock

mineral_volume Volume of minerals, syst. or block

44

Report Command

Default units Return type Rxn SpecE8 React X1t X2t
% error double 3 3 3 3

cm3 double 3 3 3 3

moles double 3 3

molal double 3 3 3 3

strings 3 3 3 3

int 3 3

liter/kg double 3 3 3 3

log fugacity double 3 3 3 3

double 3

double 3

log Q=K double 3 3 3 3

moles double 3 3 3 3

moles double 3 3 3

moles double 3 3 3

strings 3 3 3 3

kg double 3 3 3 3

cm3 double 3 3 3 3

45

GWB Reference Manual

Keyword Arguments Description
mixing_fraction Mixing fraction in flash model

mobility <surface_type(s) | index>... Mobility of colloidal surfaces

mv <mineral(s) | index>... Mineral molar volume

mw <type> <name(s) | index>...
original | current | aqueous |
surf_species | elements |
minerals | gases

Mole weight of components,
species, or elements

naqueous Number of aqueous species

nbasis Number of basis entries

ncolloids Number of mobile colloids

ncouples Number of redox couples

nelements Number of elements

ngases Number of gases

nisotopes Number of isotope systems

nlogks Number of log K values in list

nminerals <equilibrium | kinetic | both | all> Number of minerals

Nnode Number of nodal blocks

nreactants <simple | fixed | sliding
| kin_mineral | kin_redox
| kin_aqueous | kin_surface
| kin_gas | microbial | all>

Number of reactants, kinetic re-
actions

nsorbed Number of original basis
species that sorb

nsorbing_surfaces Number of sorbing surface types

nstagnant One for dual porosity, else zero

nsurf_species Number of surface species

Nx Number of nodes along x

Ny Number of nodes along y

options List of keywords for the report
command

pe <system | couples>
<name(s) | index>...

The system pe or theoretical pe
for redox couples

46

Report Command

Default units Return type Rxn SpecE8 React X1t X2t
double 3

double 3 3 3 3

cm3/mol double 3 3 3 3

g/mol double 3 3 3 3

int 3 3 3 3

int 3 3 3 3

int 3 3 3 3

int 3 3 3 3

int 3 3 3 3

int 3 3 3 3

int 3 3 3 3

int 3

int 3 3 3 3

int 3 3

int 3 3 3

int 3 3 3 3

int 3 3 3 3

int 3 3 3 3

int 3 3 3 3

int 3 3

int 3

strings 3 3 3 3 3

double 3 3 3 3

47

GWB Reference Manual

Keyword Arguments Description
permeability Sediment permeability

pH System pH

polyfit Coefficients for polynomial fit of log K

to temperature

porosity Porosity

pressure Pressure

PV Pore volumes displaced

QoverK <minerals | reactants>
<name(s) | index>...

Q/K for a mineral or reactant

rate_con <reactant(s) | index>... Rate constants for kinetic
reactions

ratecon_unit <reactant(s) | index>... Units of kinetic rate constants

reactant_area <reactant(s) | index>... Surface areas of kinetic minerals

reactant_type <reactant(s) | index>... simple, fixed, sliding,
kin_mineral, microbial, and
so on

reactants <index>...
<simple | fixed | sliding
| kin_mineral | kin_redox
| kin_aqueous | kin_surface
| kin_gas | microbial | all>

Names of reactants and kinetic
reactions

reaction Chemical reaction as a text
string

rxn_rate <reactant(s) | index>... Reaction rates

set_digits <significant digits> Set number of significant digits in results

set_node <node index | x y> Results are associated with the node
index or the x and y node indices

set_units <unit | ?> Report results in a unit different than
the default

SIS or Sionst Stoichiometric ionic strength

soln_compressibility Solution compressibility

soln_density Solution density

soln_expansivity Solution thermal expansivity

soln_mass Solution mass

48

Report Command

Default units Return type Rxn SpecE8 React X1t X2t
darcy � �m2 double 3 3 3 3

double 3 3 3 3

doubles 3

volume fraction double 3 3 3 3

bars double 3 3 3 3

double 3 3 3

double 3 3 3

(varies) double 3 3 3

strings 3 3 3

cm2 double 3 3 3

strings 3 3 3

strings 3 3 3

string 3

mol/s double 3 3 3

int 3 3 3 3 3

int 3 3

string 3 3 3 3 3

molal double 3 3 3 3

bar�1 double 3 3 3 3

g/cm3 double 3 3 3 3

°C�1 double 3 3 3 3

kg double 3 3 3 3

49

GWB Reference Manual

Keyword Arguments Description
soln_viscosity Viscosity of fluid

soln_volume Volume of fluid

sorb_area <surface_type(s) | index>... Areas of sorbing surfaces

sorbed <index>... Names of original basis
species that sorb

sorption_capacity <surface_type(s) | index>... Capacity of a Langmuir surface

stagnant Volume of stagnant zone in nodal block

success Returns a value of one if the GWB
application has successfully completed
a calculation, zero if it has not or if the
last calculation failed

surf_charge or
surf_charge0

<surface_type(s) | index>... Electrical charge at 0-plane
of a sorbing surface

surf_chargeb <surface_type(s) | index>... Electrical charge at ˇ-plane

surf_charged <surface_type(s) | index>... Electrical charge at d -plane

surf_potential or
surf_potential0

<surface_type(s) | index>... Electrical potential at 0-plane
of a sorbing surface

surf_potentialb <surface_type(s) | index>... Electrical potential at ˇ-plane

surf_potentiald <surface_type(s) | index>... Electrical potential at d -plane

surf_species <index>... Names of surface species

surf_type Types of reacting surfaces

surfaces Names of reacting surfaces

TDS Total dissolved solids

temperature or T Temperature

temps List of principle temperatures

Tend Final time of simulation

Time Current point in time

total_biomass Biomass in system or block

total_reacted Mass reacted into system or block

TPF <reactant(s) | index>... Thermodynamic potential factor

Tstart Beginning time of simulation

50

Report Command

Default units Return type Rxn SpecE8 React X1t X2t
cp double 3 3 3 3

cm3 double 3 3 3 3

cm2 double 3 3 3 3

strings 3 3 3 3

mol double 3 3 3 3

cm3 double 3 3 3 3

int 3 3 3 3 3

�C/cm2 double 3 3 3 3

�C/cm2 double 3 3 3 3

�C/cm2 double 3 3 3 3

mV double 3 3 3 3

mV double 3 3 3 3

mV double 3 3 3 3

strings 3 3 3 3

strings 3 3 3 3

strings 3 3 3 3

mg/kg double 3 3 3 3

°C double 3 3 3 3

°C doubles 3

s double 3 3 3

s double 3 3 3

mg/kg double 3 3 3

g double 3 3 3

double 3 3 3

s double 3 3 3

51

GWB Reference Manual

Keyword Arguments Description
velocity Fluid velocity

Watact Activity of water

watertype Ion type of water

Wmass Water mass

xcoef_dispersion x coefficient of dispersion

xdischarge x specific discharge

Xfree Free-flowing fraction

Xi Reaction progress

xpermeability x permeability

xsorbed <name(s) | index>... Sorbed fraction of an original
basis entry

xvelocity Fluid velocity along x

xycoef_dispersion xy coefficient of dispersion

ycoef_dispersion y coefficient of dispersion

ydischarge y specific discharge

ypermeability y permeability

yvelocity Fluid velocity along y

isotope |
Hydrogen-2 |
Carbon-13 |
Oxygen-18 |
Sulfur-34 |
symbol |
2-H | 13-C |
18-O | 34-S

<fluid | rock | sorbate | system>
solvent
aqueous
minerals
gases
surf_species
reactants
<name(s) | index>...

Isotopic compositions of
various aspects of system

52

Report Command

Default units Return type Rxn SpecE8 React X1t X2t
cm/s double 3 3

double 3 3 3 3

string 3 3 3 3

kg double 3 3 3 3

cm2/s double 3

cm3/cm2 s double 3

double 3 3 3 3

double 3 3 3

darcy � �m2 double 3

double 3 3 3 3

cm/s double 3

cm2/s double 3

cm2/s double 3

cm3/cm2 s double 3

darcy � �m2 double 3

cm/s double 3

ı (�) double 3 3 3 3

53

54

Control Scripts

When you read an ordinary script in one of the GWB applications (Rxn, Act2,
Tact, SpecE8, React, Phase2, X1t, or X2t), the application steps through the script
line-by-line, executing the commands encountered, until it reaches the script’s end. A
control script differs from an ordinary script in that it can contain control statements,
such as assignments, loops, and if-then-else constructs.

This chapter describes how to set up a control script and gives an example of such
a script. The Multiple Analyses chapter in this guide shows a further example of how
control scripts can be applied, in this case to add the results of GWB calculations to
a spreadsheet containing the results of a number of chemical analyses.

A control script can occupy an entire script file, or just a portion of one. The control
script is preceded by the statement

script

The control script terminates at the end of the file, or with the statement

script end

The lines within the control script may be either application commands (e.g., commands
recognized by React) or control statements.

When writing file names within control scripts, following Tcl syntax, you use double
rather than single backslashes (i.e., “\\” instead of “\”) as separators. In addition,
you enclose filenames containing spaces or special characters with braces (“{. . . }”).
For example, the application commands

read GWB\react.rea
data "c:\Program Files\GWB\gtdata\thermo.data"

would appear as

read GWB\\react.rea
data {"c:\\Program Files\\GWB\\gtdata\\thermo.data"}

within a control script.

55

GWB Reference Manual

6.1 Control statements
The applications recognize control statements in the form of Tcl commands. Tcl
(pronounced “tickle”) is an open-source scripting language, designed to be easy to
learn and use. You can find information about the Tcl syntax on various web sites
such as www.tcl.tk and mini.net/tcl, as well as a number of widely available textbooks
(you can search on “Tcl” at www.amazon.com).

In Tcl, you define a variable with the “set” command, and use a “$” in front of the
variable name to reference its value. For example, the commands

set pH 4.5
set label "The pH is"
puts "$label $pH"

assign a value of 4.5 to a variable named “pH” and a literal string to variable “label”,
and then write them to the screen using the “puts” command.

Other useful commands include
for Define a loop
while Define a loop
eval Evaluate a command
expr Evaluate an expression
if {...} Set an if-then-else block
elseif {...}
else

proc Define a procedure
open Open a file
close Close a file
gets Get input from a file or prompt
puts Output data to a file or prompt
info commands List Tcl commands

If you write procedures (using the “proc” command), you should be careful not to
name them using GWB keywords, or the names of species in the thermo dataset.
For example, if you were to name a procedure “Fe++”, you would no longer be able
to constrain the concentration of ferrous iron.

Before beginning to write a command script, you will want to consult a more complete
Tcl reference to learn a few details of the language syntax.

6.2 Interacting with the application program
You can use the Tcl “eval” command to construct a GWB command and execute it
within the GWB application. In a React control script, for example, the Tcl command

eval {"pH =" $value}

56

Control Scripts

causes pH in the React run to be set to the contents of variable “value”.
You can interrogate the GWB application program about its calculation results using

the “report” command. For example, once you have calculated a geochemical model
using React, the commmand

report pH

returns the predicted pH. You can set the value of a variable “new_pH” in a command
script to this value with the Tcl command

set new_pH [eval report pH]

6.3 Example control script
The following control script uses program React to search for the rate constant that
describes the results of a hydrothermal experiment. In the experiment, 1 kg of water
with an initial silica concentration of 1 mg/kg reacts at 100°C with 5000 g of quartz.

After 5 days, the silica concentration is observed to be .55 mmolal. The script
searches for a rate constant in the range 10�16 to 10�14 mol/cm2 sec that explains
this result. In the script, React commands are shown in bold face, for clarity, whereas
Tcl commands are shown in normal typeface.

time begin = 0 days, end = 5 days
T = 100
SiO2(aq) = 1 mg/kg
react 5000 g Quartz
kinetic Quartz surface = 1000

script start
proc find_ratecon {low high species conc} {

set gotit 0
for {set i 0} {$i < 50} {incr i 1} {

set test [expr {($low + $high) / 2}]
eval {kinetic Quartz rate_con = $test}
go
set back [eval report molality $species]
if {[expr {abs($back - $conc)}] < 1e-6} {

set gotit 1
break

}
if {$back < $conc} {

set low $test
} else {set high $test}

}
if {$gotit} {

57

GWB Reference Manual

puts "The optimum rate constant is $test mol/cm2 s"
puts "The control script converged in $i iterations"

} else {
puts "The control script did not converge"

}
}
Find the rate constant for Quartz dissolution that gives a
SiO2(aq) concentration of .00055 molal after 5 days.
find_ratecon 1e-16 1e-14 "SiO2(aq)" .00055
script end

6.4 Tcl license agreement
GWB control scripts are evaluated according to the Tcl scripting language, using open
source software distributed under the following license agreeement:

This software is copyrighted by the Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties. The following terms apply
to all files associated with the software unless explicitly disclaimed in individual files. The
authors hereby grant permission to use, copy, modify, distribute, and license this software
and its documentation for any purpose, provided that existing copyright notices are
retainedinallcopiesandthatthisnoticeis includedverbatiminanydistributions.Nowritten
agreement, license, or royalty fee is required for any of the authorized uses. Modifications
to this software may be copyrighted by their authors and need not follow the licensing
termsdescribedhere,provided that thenewtermsareclearly indicatedon thefirstpageof
each file where they apply. IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS
BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS
DOCUMENTATION,ORANYDERIVATIVESTHEREOF,EVENIFTHEAUTHORSHAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE AUTHORS AND
DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE
IS PROVIDED ON AN “AS IS” BASIS, AND THE AUTHORS AND DISTRIBUTORS
HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS. GOVERNMENT USE: If you are acquiring
this software on behalf of the U.S. government, the Government shall have only
“Restricted Rights” in the software and related documentation as defined in the Federal
Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the
software on behalf of the Department of Defense, the software shall be classified as
“Commercial Computer Software” and the Government shall have only “Restricted
Rights” as defined in Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the
foregoing, the authors grant the U.S. Government and others acting in its behalf
permission to use and distribute the software in accordance with the terms specified
in this license.

58

Plug-in Feature

The GWB plug-in feature is implemented as a Dynamic-Link Library (DLL). For ease
of use, GWB provides wrapper classes for C++, Fortran, Java, Perl, and Python that
handle loading the DLL, binding to the needed functions, and conversion to C data
types. You might create your own wrapper for the plug-in feature in other languages.

You can plug-in the capabilities of Rxn, SpecE8, React, Phase2, X1t, and X2t to a
program that you write using the GWB plug-in feature.

In writing a program of your own, for example, you might need to determine the
saturation state of calcite in a fluid of arbitrary composition. Instead of developing
code to calculate the distribution of mass and mineral saturation states in a fluid, you
could use SpecE8 from within your program to do the work for you.

Similarly, you could use the plug-in feature to balance reactions with Rxn, or figure
the results of irreversible reaction paths with React.

In each case, you would configure the GWB plug-in with text commands, trigger
the calculation with a “go” command, and then retrieve the calculation results to use
for your own purposes.

You transfer the results from the GWB plug-in with the “results” function, an interface
for the “report” command (documented in the Report Command chapter in this GWB
Reference Manual).

You may also simply read datasets, such as “SpecE8_output.txt”, produced by the
GWB applications, into your program.

The following sections describe and give examples of how to take advantage of the
plug-in feature when developing your software with specific languages and compilers.

59

GWB Reference Manual

7.1 C++
GWB provides a GWBplugin wrapper class contained in the header file “GWBplugin.h”,
and the GWBplugin.dll export library “GWBplugin.lib” to link to. GWBplugin.h is installed
in the “src” subdirectory of the GWB installation directory while the GWBplugin.lib is
installed to the main GWB installation directory. In order to locate the GWB DLLs
the GWBplugin class uses, you must add the GWB installation directory to the PATH
environment variable.

This is the C++ wrapper class provided in GWBplugin.h:

// GWBplugin.h

#define ANULL -999999.0 // marker for an undefined value

class GWBplugin {
public:

GWBplugin();
~GWBplugin();
int initialize(const char* app_name, const char* file_name = NULL,

const char* cmds = NULL);
int exec_cmd(char* uline);
int results(void* data, const char* value, const char* units = NULL,

int ix = 0, int jy = 0);
};

7.1.1 Initializing the GWB application
Within your code, first create a GWBplugin object.

#include "GWBplugin.h"

GWBplugin myPlugin;

Next, use the “initialize” function to start the GWB application of interest by passing
the application name, an optional output file name, and any command-line type
arguments. The “initialize” function must be called before calling any of the other
functions.

int initialize (
const char* app_name,
const char* file_name = NULL,
const char* cmds = NULL

);

Parameters:

60

Plug-in Feature

app_name
String containing the GWB application name - “rxn”, “spece8”, “react”, “x1t”, or “x2t”.

file_name (optional)
String containing the name of the file you want the GWB output written to. This

can be NULL or an empty string if you do not want the output to be written to a file.
cmds (optional)

String containing command-line options you could normally pass to the application
when running it from the command-line. This can be NULL or an empty string.

Command-line options:

-cd Change the working directory to the directory containing the input script
specified with the -i option.

-nocd Do not change the working directory.
-i <input_script> Read initial input commands from the specified file.
-gtd <gtdata_dir> Set directory to search for thermodynamic datasets.
-cond <cond_data> Set the dataset for calculating electrical conductivity.
-d <thermo_data> Set the thermodynamic dataset.
-s <surf_data> Set a dataset of surface sorption reactions.
-iso <isotope_data> Set a dataset of isotope fractionation factors.

Return value
Non-zero on success and zero on failure.

Examples
Some examples of how to start the GWB plug-in in various ways:

// plug-in SpecE8 with no output written and no command-line options
int success = myPlugin.initialize("spece8");

// plug-in React with output written to output.txt and no command-line options
int success = myPlugin.initialize("react", "output.txt");

// plug-in X1t with no output written, no working directory change,
// and input read from pb_contam.x1t
int success = myPlugin.initialize("x1t", NULL, "-nocd

-i \"c:/program files/gwb/script/pb_contam.x1t\"");

7.1.2 Configuring and executing calculations
Use the “exec_cmd” function to transmit commands to the GWB plug-in. Each application
has a chapter in the GWB Command Reference that is a comprehensive guide to
the commands available. Use these commands to configure the application and then
send a “go” command to trigger the calculations.

int exec_cmd (
char* uline // command string to be sent to the GWB application

);

61

GWB Reference Manual

Return value
Non-zero on success and zero on failure.

Examples

myPlugin.exec_cmd("3 mmol H+");
myPlugin.exec_cmd("2 mmol Ca++");
myPlugin.exec_cmd("5 mmolar Cl-");
myPlugin.exec_cmd("go"); // trigger the calculation

7.1.3 Retrieving the results
Transfer calculation results from the GWB application to your program with the “results”
function. The keywords, arguments, default units, and return types are the same as
those listed in the table in the Report Command chapter of this reference manual.

To use the “results” function, you provide the address of a data block to fill, along
with the report command and keywords, optional desired units, and the node location
of choice (X1t and X2t only).

int results(
void* data,
const char* value,
const char* units = NULL,
int ix = 0,
int jy = 0

);

Parameters:
data

Address of data block to fill. This can be NULL to determine data block size.
value

String containing the report command keyword and arguments.
units (optional)

String containing the units you want the results returned in. This can be NULL or
an empty string if you want the results returned in the default units.
ix (optional)

X node position. This is only used when running X1t and X2t, otherwise it is ignored.
jy (optional)

Y node position. This is only used when running X2t, otherwise it is ignored.
Return value

The number of values written (or to be written) to the data block.
Remarks

To determine the size of data block you will need, first call this function with the
data parameter as NULL and with the rest of the parameters filled. If you know that
the report command you are using only returns a single value, you can simply pass
a pointer to the correct data type. See the Report Command chapter for details on
data types and available keywords.

62

Plug-in Feature

Examples

// get aqueous species names
int ndata = myPlugin.results(NULL, "species");
char** Species = new char*[ndata];
myPlugin.results(Species, "species");

// get aqueous species concentrations in mg/kg
double* Conc = new double[ndata];
myPlugin.results(Conc, "concentration aqueous", "mg/kg");

// get pH at node 3,5
double pH = ANULL;
myPlugin.results(&pH, "pH", NULL, 3, 5);

If the command fails for any reason, for example if the requested data doesn’t exist
or the specified unit conversion failed, the data will be filled with ANULL (-999999.0).

7.1.4 C++ code examples using the plug-in feature
Normally you would use the GWB plug-in within your program with no output being
written to a file. The following is an example of this:

#include "GWBplugin.h"

int main(int argc, char* argv[])
{

// create the plug-in object
GWBplugin* myGWBrun = new GWBplugin();

// start the GWB program
if (myGWBrun->initialize("spece8", NULL, "-nocd")) { // started successfully

printf("Beginning run.\n");
// configure SpecE8 and trigger calculation
const char* cmds[3] = {"pH = 8", "molality Cl- = .05", "go"};
for(int i = 0; i < 3; i++)

myGWBrun->exec_cmd(cmds[i]);
printf("Finished run.\n\n");

// retrieve results
double pH;
myGWBrun->results(&pH, "pH");

double Cl;
myGWBrun->results(&Cl, "concentration Cl-"); // in default units
printf("concentration of Cl- in molal is %10.4g\n", Cl);
myGWBrun->results(&Cl, "concentration Cl-", "mg/kg"); // in different units

63

GWB Reference Manual

printf("concentration of Cl- in mg/kg %10.4g\n", Cl);

// get size of data
int nspec = myGWBrun->results(NULL, "species");

// create data blocks
const char** Name = new const char*[nspec];
double* Spec = new double[nspec];

// send data pointer with keyword and arguments
myGWBrun->results(Name, "species");
myGWBrun->results(Spec, "concentration aqueous", "mg/kg");

printf("\n There are %d aqueous species\n\n", nspec);
for(int i = 0; i < nspec; i++)

printf("%-4s = %10.4g mg/kg\n", Name[i], Spec[i]);

delete[] Name;
delete[] Spec;

}
else {

// handle failure to start within your program
}
delete myGWBrun;
return 0;

}

To familiarize yourself with the plug-in feature, you might want the GWB program’s
normal output and results to be written to the console and to text files. The following
code shows examples of this:

#include "GWBplugin.h"
#include <stdio.h>

int main(int argc, char* argv[])
{

fprintf(stdout, "Starting program SpecE8\n");

GWBplugin* myGWBrun = new GWBplugin();

if (myGWBrun->initialize(
"spece8",
"test_output.txt",
"-nocd -i \"C:/Program Files/Gwb/Script/Freshwater.sp8\"
-s \"C:/Program Files/Gwb/Gtdata/FeOH.sdat\""))

{ // started successfully

fprintf(stdout, "writing output to test_output.txt\n");

64

Plug-in Feature

myGWBrun->exec_cmd("show surfaces"); // write to output file

fprintf(stdout, "Executing test\n");

FILE *fp;
if ((fp=fopen("test_results.txt", "w")) == NULL) {

fprintf(stderr, "can't open test_results.txt\n");
}
else {

fprintf(stdout, "writing results to test_results.txt\n");

char* cmds[3] = {"pH = 8", "molality Cl- = .05", "go"};
for(int i = 0; i < 3; i++)

myGWBrun->exec_cmd(cmds[i]);

double pH;
myGWBrun->results(&pH, "pH");
fprintf(fp, "pH = %4.1f\n", pH);

double Cl;
myGWBrun->results(&Cl, "concentration Cl-");
fprintf(fp, "Cl = %12.5e molal\n", Cl);

myGWBrun->results(&Cl, "concentration Cl-", "mg/kg");
if(Cl != ANULL)

fprintf(fp, "Cl = %12.5e mg/kg\n\n", Cl);
else

fprintf(fp, "unit conversion failed - Cl = ANULL\n\n");

int nspec = myGWBrun->results(NULL, "species");
const char** Name = new const char*[nspec];
double* Spec = new double[nspec];

if (myGWBrun->results(Name, "species")) {
if (myGWBrun->results(Spec, "concentration aqueous")) {

for (int i = 0; i < nspec; i++)
fprintf(fp, "%-32s %12.5e molal\n", Name[i], Spec[i]);

}
if (myGWBrun->results(Spec, "concentration aqueous", "mg/kg")) {

for (int i = 0; i < nspec; i++)
fprintf(fp, "%-32s %12.5e mg/kg\n", Name[i], Spec[i]);

}
}

if (fp)
fclose(fp);

65

GWB Reference Manual

delete[] Name;
delete[] Spec;

}
}
else

fprintf(stderr, "SpecE8 failed to start\n");

delete myGWBrun;

fprintf(stdout, "press return to exit> ");
getchar();

return 0;
}

7.1.5 C++ compiling and linking
The GWB plug-in has been tested on C++ compilers from Microsoft, Intel, and GCC.
The version of the compiler you are using must be the same as the version of GWB
installed (32-bit vs. 64-bit).

To compile the GWBplugin Example1 on the command line with the Microsoft or
Intel compiler, follow these steps:

// open the Microsoft Visual Studio or Intel Command Prompt

// create a working folder and change to that folder
mkdir "%homepath%\GWBplugin"
cd "%homepath%\GWBplugin"

// copy the "src" folder from GWB installation (default install path shown)
copy /Y "C:\Program Files\GWB\src"

// copy the GWBplugin.lib file from GWB installation (default install path shown)
copy /Y "C:\Program Files\GWB\gwbplugin.lib"

// add the GWB installation folder to your path
set path=C:\Program Files\GWB;%path%

// compile the example file and tell the compiler to use the GWBplugin library
cl GWBplugin_Cpp_Example1.cpp GWBplugin.lib // Microsoft
// or
icl GWBplugin_Cpp_Example1.cpp GWBplugin.lib // Intel

// run the example program
GWBplugin_Cpp_Example1.exe

66

Plug-in Feature

To compile the GWBplugin Example1 on the command line with MinGW, MSYS,
and g++, follow these steps:

// launch the MinGW shell

// create a working folder and change to that folder
mkdir -p ~/GWBplugin
cd ~/GWBplugin

// copy the "src" folder from GWB installation (default install path shown)
cp /c/program\ files/gwb/src/* .

// copy the GWBplugin.lib file from GWB installation (default install path shown)
cp /c/program\ files/gwb/gwbplugin.lib .

// add the GWB installation folder to your path
PATH=/c/program\ files/gwb:$PATH

// compile the example file and tell the compiler to use the GWBplugin library
g++ GWBplugin_Cpp_Example1.cpp GWBplugin.lib -o

GWBplugin_Cpp_Example1.exe // all on one line

// run the example program
./GWBplugin_Cpp_Example1.exe

To compile the GWBplugin Example1 in Microsoft Visual Studio, follow these steps:

// open Visual Studio

// create a new project (Ctrl+Shift+N)

// select the "Visual C++" project type and use the "Empty Project" template

// select Project->Add Existing Item... (Shift+Alt+A)
// browse to the "src" subfolder of the GWB installation, select the
// "GWBplugin_Cpp_example1.cpp" file and click "Add"

// open Project->Properties->Configuration Properties

// next to Configuration: select "All configurations"

// next to Platform: select Win32 for 32-bit builds or x64 for 64-bit builds

// under Configuration Properties->

// C/C++->General->Additional Include Directories -
// add the GWB installation "src" folder
// "c:\program files\gwb\src"

67

GWB Reference Manual

// Linker->Input->Additional Dependencies -
// add the GWBplugin.lib library
// "c:\program files\gwb\gwbplugin.lib"

// Debugging->Environment -
// add the GWB install folder to the path
// path=%path%;c:\program files\gwb

// build using Build->Build Solution

// run using Debug->Start Without Debugging

Note: If you need to debug your program you must attach a debugger after the
"initialize" call to GWBplugin. A good way to do this is to put in a getchar() call that
will pause the program until you can attach the debugger.

68

Plug-in Feature

7.2 Fortran
GWB provides a Fortran interface, “GWBplugin.f90”, and the GWBplugin.dll export
library “GWBplugin.lib” to link to. GWBplugin.f90 is installed in the “src” subdirectory
of the GWB installation directory while the GWBplugin.lib is installed in the main GWB
installation directory. The GWB plug-in has been tested on Fortran compilers from
Intel and GCC. The version of the compiler you are using must be the same as the
version of GWB installed (32-bit vs. 64-bit).

This is the Fortran wrapper interface provided in GWBplugin.f90:

// GWBplugin.f90

MODULE GWBpluginModule

INTEGER, PARAMETER :: ANULL = -999999 ! marker for undefined value
INTEGER, PARAMETER :: GWB_MAX_RESPONSE = 32

TYPE GWBplugin

FUNCTION initialize(plugin, app_name, file_name, cmds) RESULT(retval)
TYPE(GWBplugin), INTENT(out), TARGET :: plugin
CHARACTER(LEN = *), INTENT(in) :: app_name
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: file_name, cmds
INTEGER(C_INT) :: retval

FUNCTION exec_cmd(plugin, uline) RESULT(retval)
TYPE(GWBplugin), INTENT(in), TARGET :: plugin
CHARACTER(LEN = *), INTENT(in) :: uline
INTEGER(C_INT) :: retval

FUNCTION results(plugin, f_data, f_value, f_units, ix, jy) RESULT(retval)
TYPE(GWBplugin), INTENT(in), TARGET :: plugin
! f_data :

CHARACTER(LEN = GWB_MAX_RESPONSE), INTENT(out),
OPTIONAL :: f_data(:)

!or
REAL(8), INTENT(out), OPTIONAL :: f_data(:)

!or
INTEGER, INTENT(out), OPTIONAL :: f_data(:)

CHARACTER(LEN = *), INTENT(in) :: f_value
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: f_units
INTEGER, INTENT(in), OPTIONAL :: ix, jy
INTEGER(C_INT) :: retval

69

GWB Reference Manual

SUBROUTINE destroy(plugin)
TYPE(GWBplugin), INTENT(in), TARGET :: plugin

7.2.1 Initializing the GWB application
Within your code, first create a GWBplugin object.

INCLUDE "GWBplugin.f90"

USE GWBpluginModule
TYPE(GWBplugin) :: myPlugin

Next, use the “initialize” function to start the GWB application of interest by passing
the application name, an optional output file name, and any command-line type
arguments.

FUNCTION initialize(plugin, app_name, file_name, cmds) RESULT(retval)
TYPE(GWBplugin), INTENT(out), TARGET :: plugin
CHARACTER(LEN = *), INTENT(in) :: app_name
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: file_name, cmds
INTEGER(C_INT) :: retval

Parameters:
plugin

An instance of type GWBplugin.
app_name

String containing the GWB application name - “rxn”, “spece8”, “react”, “x1t”, or “x2t”.
file_name (optional)

String containing the name of the file you want the GWB output written to. This
can be an empty string if you do not want the output to be written to a file.
cmds (optional)

String containing command-line options you could normally pass to the application
when running it from the command-line. This can be an empty string.

Command-line options:

-cd Change the working directory to the directory containing the input script
specified with the -i option.

-nocd Do not change the working directory.
-i <input_script> Read initial input commands from the specified file.
-gtd <gtdata_dir> Set directory to search for thermodynamic datasets.
-cond <cond_data> Set the dataset for calculating electrical conductivity.
-d <thermo_data> Set the thermodynamic dataset.
-s <surf_data> Set a dataset of surface sorption reactions.
-iso <isotope_data> Set a dataset of isotope fractionation factors.

Return value

70

Plug-in Feature

Non-zero on success and zero on failure.
Examples

Some examples of how to start the GWB plug-in in various ways:

INTEGER :: success

! plug-in SpecE8 with no output written and no command-line options
success = initialize(myPlugin, "spece8")

! plug-in React with output written to output.txt and no command-line options
success = initialize(myPlugin, "react", "output.txt")

! plug-in X1t with no output written, no working directory change,
! and input read from pb_contam.x1t
success = initialize(myPlugin, "x1t", "",&

'-nocd -i \"c:/program files/gwb/script/pb_contam.x1t\"')

Function "destroy" is used at the end of the program to free up the underlying memory
associated with the GWBplugin object.

CALL destroy(myPlugin)

7.2.2 Configuring and executing calculations
Use the “exec_cmd” function to transmit commands to the GWB plug-in. Each application
has a chapter in the GWB Command Reference that is a comprehensive guide to
the commands available. Use these commands to configure the application and then
send a “go” command to trigger the calculations.

FUNCTION exec_cmd(plugin, uline) RESULT(retval)
TYPE(GWBplugin), INTENT(in), TARGET :: plugin
CHARACTER(LEN = *), INTENT(in) :: uline ! command string to be sent

! to the GWB application
INTEGER(C_INT) :: retval

Return value
Non-zero on success and zero on failure.

Examples

err = exec_cmd(myPlugin, "3 mmol H+")
err = exec_cmd(myPlugin, "2 mmol Ca++")
err = exec_cmd(myPlugin, "5 mmolar Cl-")
err = exec_cmd(myPlugin, "go") ! trigger the calculation

71

GWB Reference Manual

7.2.3 Retrieving the results
Transfer calculation results from the GWB application to your program with the “results”
function. The keywords, arguments, default units, and return types are the same as
those listed in the table in the Report Command chapter of this reference manual.

To use the “results” function, you provide the address of a data block to fill, along
with the report command and keywords, optional desired units, and the node location
of choice (X1t and X2t only).

FUNCTION results(plugin, f_data, f_value, f_units, ix, jy) RESULT(retval)
TYPE(GWBplugin), INTENT(in), TARGET :: plugin
! f_data :

CHARACTER(LEN = GWB_MAX_RESPONSE), INTENT(out),
OPTIONAL :: f_data(:)

!or
REAL(8), INTENT(out), OPTIONAL :: f_data(:)

!or
INTEGER, INTENT(out), OPTIONAL :: f_data(:)

CHARACTER(LEN = *), INTENT(in) :: f_value
CHARACTER(LEN = *), INTENT(in), OPTIONAL :: f_units
INTEGER, INTENT(in), OPTIONAL :: ix, jy
INTEGER(C_INT) :: retval

Parameters:
plugin

An instance of type GWBplugin.
f_data

Address of data block to fill, omit it to find the size of data block needed.
f_value

String containing the report command keyword and arguments.
f_units (optional)

String containing the units you want the results returned in. This can be an empty
string if you want the results returned in the default units.
ix (optional)

X node position. This is only used when running X1t and X2t, otherwise it is ignored.
jy (optional)

Y node position. This is only used when running X2t, otherwise it is ignored.
Return value

The number of values written (or to be written) to the data block.
Remarks

To determine the size of data block you will need, first call this function with the
data parameter omitted and with the rest of the parameters filled. If you know that the
report command you are using only returns a single value, you can simply pass an
array of size 1 of the correct data type. See the Report Command chapter for details
on data types and available keywords.
Examples

72

Plug-in Feature

! get aqueous species names
INTEGER :: nspec
nspec = results(myPlugin, "species");
CHARACTER(LEN=GWB_MAX_RESPONSE), ALLOCATABLE :: Species(:)
ALLOCATE(Species(nspec))
results(myPlugin, Species, "species")

! get aqueous species concentrations in mg/kg
REAL(8), ALLOCATABLE :: Conc(:)
ALLOCATE(Conc(nspec))
results(myPlugin, Conc, "concentration aqueous", "mg/kg")

! get pH at node 3,5
REAL(8) :: pH(1)
results(myPlugin, pH, "pH", "", 3, 5)

A named constant with the maximum size of strings output by the “results” command
is declared in the module:

INTEGER, PARAMETER :: GWB_MAX_RESPONSE = 32

If the command fails for any reason, for example if the requested data doesn’t
exist or the specified unit conversion failed, the data block will be filled with ANULL
(-999999).

7.2.4 Fortran code examples using the plug-in feature
The following are Fortran code examples that do the same things as the C++ code
examples above. This is a code example using the GWB plug-in within your program
with no output being written to a file:

INCLUDE "GWBplugin.f90"

PROGRAM FortranPlugin_Example1
USE GWBpluginModule
IMPLICIT NONE

INTEGER :: nspec, err, i
TYPE(GWBplugin) :: myGWBrun
CHARACTER (LEN=GWB_MAX_RESPONSE), ALLOCATABLE :: Name(:)
REAL(8), ALLOCATABLE :: Spec(:)
REAL(8) :: pH(1), Cl(1)
CHARACTER(LEN=255), dimension(3), PARAMETER :: &

cmds = [character(len=255) :: &
"pH = 8", "molality Cl- = .05", "go"]

! create and start the GWB program

73

GWB Reference Manual

IF (initialize(myGwbrun, "spece8", "", "-nocd") /= 0) THEN

! started successfully

WRITE(*,*) "Beginning run."

! configure SpecE8 and trigger calculation
DO i = 1, 3

err = exec_cmd(myGwbrun, cmds(i))
END DO

WRITE(*,*) "Finished run."
WRITE(*,*)

! retrieve results
err = results(myGwbrun, pH, "pH")
err = results(myGwbrun, Cl, "concentration Cl-")
WRITE(*,'("concentration of Cl- in molal is ", G10.3)') Cl
err = results(myGwbrun, Cl, "concentration Cl-", "mg/kg")
WRITE(*,'("concentration of Cl- in mg/kg is ", G10.3)') Cl
WRITE(*,*)

! get size of data
nspec = results(myGwbrun, "species");
WRITE(*,'(There are", I2, " aqueous species")') nspec
WRITE(*,*)

! create data blocks
ALLOCATE(Name(nspec))
ALLOCATE(Spec(nspec))

! send data pointer with keyword and arguments
err = results(myGwbrun, Name, "species")
err = results(myGwbrun, Spec, "concentration aqueous", "mg/kg")

DO i = 1, nspec
WRITE(*,'(A4, " = ", G10.3, " mg/kg")') Name(i), Spec(i)

END DO
WRITE(*,*)

! use the data in your program

DEALLOCATE(Name)
DEALLOCATE(Spec)

ELSE
! handle failure to start within your program

END IF

74

Plug-in Feature

CALL destroy(myGwbrun)

END PROGRAM FortranPlugin_Example1

Code example with the GWB application’s normal output and results written to the
console or to text files:

INCLUDE "GWBplugin.f90"

PROGRAM FortranPlugin_Example2
USE GWBpluginModule
IMPLICIT NONE

INTEGER :: nspec, err, i
TYPE (GWBplugin) :: myGWBrun
CHARACTER (LEN=GWB_MAX_RESPONSE), ALLOCATABLE :: Name(:)
REAL(8), ALLOCATABLE :: Spec(:)
REAL(8) :: pH(1), Cl(1)
CHARACTER(LEN=255), dimension(3), PARAMETER :: &

cmds = [character(len=255) :: &
"pH = 8", "molality Cl- = .05", "go"]

CHARACTER :: a

WRITE(*,*) "Starting program SpecE8"

IF (initialize(myGwbrun, "spece8" , "test_output.txt",&
'-nocd -i "C:/Program Files/Gwb/Script/Freshwater.sp8"&
&-s "C:/Program Files/Gwb/Gtdata/FeOH.sdat"') /= 0) THEN

err = exec_cmd(myGwbrun, "show surfaces")

WRITE(*,*) "Executing Test"

OPEN(10, file = 'test_results.txt')
WRITE(*,*) "Writing results to test_results.txt"

DO i = 1, 3
err = exec_cmd(myGwbrun, cmds(i))

END DO

err = results(myGwbrun, pH, "pH")
WRITE(10, '("pH = ", F4.1)') pH

err = results(myGwbrun, Cl, "concentration Cl-")
WRITE(10, '("Cl = ", ES12.5, " molal")') Cl

err = results(myGwbrun, Cl, "concentration Cl-", "mg/kg")

75

GWB Reference Manual

IF (err /= ANULL) THEN
WRITE(10, '("Cl = ", ES12.5, " mg/kg")') Cl

ELSE
WRITE(10,*) "unit conversion failed - CL = ANULL"

END IF

WRITE(10,*)

nspec = results(myGwbrun, "species");

ALLOCATE(Name(nspec))
ALLOCATE(Spec(nspec))

IF (results(myGwbrun, Name, "species") /= 0) THEN
IF (results(myGwbrun, Spec, "concentration aqueous") /= 0) THEN

DO i = 1, nspec
WRITE(10, '(A32, ES12.5, " molal")') Name(i), Spec(i)

END DO
END IF

WRITE(10,*)
WRITE(10,*)

IF (results(myGwbrun, Spec, "concentration aqueous", "mg/kg") /= 0) THEN
DO i = 1, nspec

WRITE(10, '(A32, ES12.5, " mg/kg")') Name(i), Spec(i)
END DO

END IF
END IF

CLOSE(10)

DEALLOCATE(Name)
DEALLOCATE(Spec)

END IF

CALL destroy(myGwbrun)

WRITE(*,*) "enter any letter to exit> "
READ(*,*) a

END PROGRAM FortranPlugin_Example2

76

Plug-in Feature

7.2.5 Fortran compiling
The GWB plug-in has been tested on Fortran compilers from Intel and GCC. The
version of the compiler you are using must be the same as the version of GWB
installed (32-bit vs. 64-bit).

To compile the GWBplugin Example1 on the command line with Intel’s Fortran
compiler, follow these steps:

! open the Intel Command Prompt

! create a working folder and change to that folder
mkdir "%homepath%\GWBplugin"
cd "%homepath%\GWBplugin"

! copy the "src" folder from GWB installation (default install path shown)
copy /Y "C:\Program Files\GWB\src"

! copy the "GWBplugin.lib" file from GWB installation (default install path shown)
copy /Y "C:\Program Files\GWB\gwbplugin.lib"

! add the GWB installation folder to your path
set path=C:\Program Files\GWB;%path%

! compile the example file and tell the compiler to use the GWBplugin library
ifort GWBplugin_Fortran_Example1.f90 GWBplugin.lib

! run the example
GWBplugin_Fortran_Example1.exe

To compile the GWBplugin Example1 on the command line with MinGW, MSYS,
and gfortran, follow these steps:

! launch the MinGW Shell

! create a working folder and change to that folder
mkdir -p ~/GWBplugin
cd ~/GWBplugin

! copy the "src" folder from GWB installation (default install path shown)
cp /c/program\ files/gwb/src/* .

! copy the "GWBplugin.lib" file from GWB installation (default install path shown)
cp /c/program\ files/gwb/gwbplugin.lib .

! add the GWB installation folder to your path
PATH=/c/program\ files/gwb:$PATH

77

GWB Reference Manual

! compile the example file and tell the compiler to use the GWBplugin library
gfortran GWBplugin_Fortran_Example1.f90 GWBplugin.lib -o

GWBplugin_Fortran_Example1.exe ! all on one line

! run the example
./GWBplugin_Fortran_Example1.exe

To compile the GWBplugin Example1 in Microsoft Visual Studio with Intel’s Fortran
compiler, follow these steps:

! open Visual Studio

! create a new project (Ctrl+Shift+N)

! select the "Intel(R) Visual Fortran" project type,
! select "Console Application", and use the "Empty Project" template

! select Project->Add Existing Item... (Shift+Alt+A)
! browse to the "src" subfolder of the GWB installation,
! select the "GWBplugin_Fortran_example1.f90" file and click "Add"

! open Project->Properties->Configuration Properties

! next to Configuration: select "All configurations"

! next to Platform: select Win32 for 32-bit builds or x64 for 64-bit builds

! under Configuration Properties->

! Fortran->General->Additional Include Directories -
! add the GWB installation "src" folder
! "c:\program files\gwb\src"

! Linker->Input->Additional Dependencies -
! add the GWBplugin.lib library
! "c:\program files\gwb\gwbplugin.lib"

! Debugging->Environment -
! add the GWB install folder to the path
! path=%path%;c:\program files\gwb

! build using Build->Build Solution

! run using Debug->Start Without Debugging

78

Plug-in Feature

Note: If you need to debug your program you must attach a debugger after the
"initialize" call to GWBplugin, otherwise your program will encounter a run-time error.

79

GWB Reference Manual

7.3 Java
GWB provides a GWBplugin wrapper class contained in the file “GWBplugin.java”
installed in the “src” subdirectory of the GWB installation directory. In order to locate the
GWB DLLs the GWBplugin class uses, you must add the GWB installation directory
to the PATH environment variable.

To compile your program you will need to have a Java Development Kit (JDK)
installed. The version of the Java virtual machine must match the version of GWB
installed (32-bit vs. 64-bit). For loading the DLL and conversion to C data types,
the GWBplugin class depends on the Java Native Access library (JNA). For ease of
use the “GWBplugin.java” wrapper and the JNA library have been combined into the
“GWBplugin.jar” file installed in the “src” directory of the GWB installation directory.
This jar file must be added to the CLASSPATH variable when compiling.

// GWBplugin.java

package GWBplugin;

import com.sun.jna.*;
import com.sun.jna.ptr.PointerByReference;

This is the Java wrapper class provided by GWBplugin.java in the “src” subdirectory
of the GWB installation directory:

public class GWBplugin {

static public double ANULL = -999999;

public GWBplugin();
public int initialize(String app_name, String file_name = null,

String cmds = null);
public int exec_cmd(String uline);
public int results(Object data, String value, String units = null,

int ix = 0, int jy = 0);
public void destroy();

}

7.3.1 Initializing the GWB application
Within your code, first create a GWBplugin object.

import GWBplugin.GWBplugin;

GWBplugin myPlugin = new GWBplugin();

80

Plug-in Feature

Next, use the “initialize” function to start the GWB application of interest by passing
the application name, an optional output file name, and any command-line type
arguments. The “initialize” function must be called before calling any of the other
functions.

public int initialize (
String app_name,
String file_name = null,
String cmds = null

);

Parameters:
app_name

String containing the GWB application name - “rxn”, “spece8”, “react”, “x1t”, or “x2t”.
file_name (optional)

String containing the name of the file you want the GWB output written to. This
can be null or an empty string if you do not want the output to be written to a file.
cmds (optional)

String containing command-line options you could normally pass to the application
when running it from the command-line. This can be null or an empty string.

Command-line options:

-cd Change the working directory to the directory containing the input script
specified with the -i option.

-nocd Do not change the working directory.
-i <input_script> Read initial input commands from the specified file.
-gtd <gtdata_dir> Set directory to search for thermodynamic datasets.
-cond <cond_data> Set the dataset for calculating electrical conductivity.
-d <thermo_data> Set the thermodynamic dataset.
-s <surf_data> Set a dataset of surface sorption reactions.
-iso <isotope_data> Set a dataset of isotope fractionation factors.

Return value
Non-zero on success and zero on failure.

Examples
Some examples of how to start the GWB plug-in in various ways:

// plug-in SpecE8 with no output written and no command-line options
int success = myPlugin.initialize("spece8");

// plug-in React with output written to output.txt and no command-line options
int success = myPlugin.initialize("react", "output.txt");

// plug-in X1t with no output written, no working directory change,
// and input read from pb_contam.x1t

81

GWB Reference Manual

int success = myPlugin.initialize("x1t", null, "-nocd
-i \"c:/program files/gwb/script/pb_contam.x1t\"");

Function "destroy" can be used at the end of the program to free up the underlying
memory associated with the GWBplugin object.

myPlugin.destroy();

7.3.2 Configuring and executing calculations
Use the “exec_cmd” function to transmit commands to the GWB plug-in. Each application
has a chapter in the GWB Command Reference that is a comprehensive guide to
the commands available. Use these commands to configure the application and then
send a “go” command to trigger the calculations.

public int exec_cmd (
String uline // command string to be sent to the GWB application

);

Return value
Non-zero on success and zero on failure.

Examples

myPlugin.exec_cmd("3 mmol H+");
myPlugin.exec_cmd("2 mmol Ca++");
myPlugin.exec_cmd("5 mmolar Cl-");
myPlugin.exec_cmd("go"); // trigger the calculation

7.3.3 Retrieving the results
Transfer calculation results from the GWB application to your program with the “results”
function. The keywords, arguments, default units, and return types are the same as
those listed in the table in the Report Command chapter of this reference manual.

To use the “results” function, you provide an array of the proper data type, along
with the report command and keywords, optional desired units, and the node location
of choice (X1t and X2t only).

public int results(
Object data,
String value,
String units = null,
int ix = 0,
int jy = 0

);

Parameters:

82

Plug-in Feature

data
Array of data to fill. This can be null or of type int[], double[], or String[].

value
String containing the report command keyword and arguments.

units (optional)
String containing the units you want the results returned in. This can be null or an

empty string if you want the results returned in the default units.
ix (optional)

X node position. This is only used when running X1t and X2t, otherwise it is ignored.
jy (optional)

Y node position. This is only used when running X2t, otherwise it is ignored.
Return value

The number of values written (or to be written) to the array.
Remarks

To determine the size of array you will need, first call this function with the data
parameter as null and with the rest of the parameters filled.

If the command fails for any reason, for example if the requested data doesn’t exist
or the specified unit conversion failed, the data will be filled with GWBplugin.ANULL
(-999999).
Examples

// get aqueous species names
int ndata = myPlugin.results(null, "species");
String Species[] = new String[ndata];
myPlugin.results(Species, "species");

// get aqueous species concentrations in mg/kg
double Conc[] = new double[ndata];
myPlugin.results(Conc, "concentration aqueous", "mg/kg");

// get pH at node 3,5
double pH[] = new double[1];
myPlugin.results(pH, "pH", null, 3, 5);

7.3.4 Java code examples using the plug-in feature
Normally you would use the GWB plug-in within your program with no output being
written to a file. The following is an example of this:

import GWBplugin.GWBplugin;

// run with "java -Xss10m Example1"
// to avoid possible stack_overflow_exception

class Example1 {

public static void main(String[] args) {

83

GWB Reference Manual

// create the plug-in object
GWBplugin myGWBrun = new GWBplugin();

// start the GWB program
if(myGWBrun.initialize("spece8", "", "-nocd") != 0) {

// started successfully
System.out.println("Beginning run.");

// configure SpecE8 and trigger calculation
String[] cmds = {"pH = 8", "molality Cl- = .05", "go"};
for(int i=0; i<3; i++)

myGWBrun.exec_cmd(cmds[i]);

System.out.println("Finished run.");

// retrieve results
double pH[] = new double[1];
myGWBrun.results(pH, "pH");

double Cl[] = new double[1];
// in default units
myGWBrun.results(Cl, "concentration Cl-");
System.out.println(String.format("concentration of Cl- in molal

is %10.4g" ,Cl[0]));
// in different units
myGWBrun.results(Cl, "concentration Cl-", "mg/kg");
System.out.println(String.format("concentration of Cl- in mg/kg

is %10.4g", Cl[0]));

// get size of data
int nspec = myGWBrun.results(null, "species");

// create data blocks
String Name[] = new String[nspec];
double Spec[] = new double[nspec];

// send data arrays with keyword and arguments
myGWBrun.results(Name, "species");
myGWBrun.results(Spec, "concentration aqueous", "mg/kg");

System.out.println(String.format("There are %d aqueous species.",
nspec));

for(int i=0; i<nspec; i++)
System.out.println(String.format("%-4s = %10.4g mg/kg",

Name[i], Spec[i]));

84

Plug-in Feature

myGWBrun.destroy();
}

}
}

To familiarize yourself with the plug-in feature, you might want the GWB program’s
normal output and results to be written to the console and to text files. The following
code shows examples of this:

import GWBplugin.GWBplugin;
import java.io.*;

// run with "java -Xss10m Example2"
// to avoid possible stack_overflow_exception

class Example2 {
public static void main(String[] args) {

try {
System.out.println("Starting program SpecE8");

GWBplugin myGWBrun = new GWBplugin();

if(myGWBrun.initialize("spece8",
"test_output.txt",
"-nocd -i \"c:/program files/gwb/script/freshwater.sp8\"
-s \"c:/program files/gwb/gtdata/feoh.sdat\"") != 0) {

// started successfully
System.out.println("writing output to test_output.txt.");

myGWBrun.exec_cmd("show surfaces"); // write to output file

System.out.println("Executing test");

FileOutputStream fos;
PrintStream fp;

fos = new FileOutputStream("test_results.txt");
fp = new PrintStream(fos);
System.out.println("writing results to test_results.txt");

String[] cmds = {"pH = 8", "molality Cl- = .05", "go"};
for(int i=0; i<3; i++)

myGWBrun.exec_cmd(cmds[i]);

double pH[] = new double[1];
myGWBrun.results(pH, "pH");
fp.println(String.format("pH = %4.1f ", pH[0]));

85

GWB Reference Manual

double Cl[] = new double[1];
myGWBrun.results(Cl, "concentration Cl-");
fp.println(String.format("Cl = %12.5e molal", Cl[0]));
myGWBrun.results(Cl, "concentration Cl-", "mg/kg");
if(Cl[0] != GWBplugin.ANULL)

fp.println(String.format("Cl = %12.5e mg/kg", Cl[0]));
else

fp.println("unit conversion failed - Cl = ANULL");
fp.println("");

// get size of data
int nspec = myGWBrun.results(null, "species");

// create data blocks
String Name[] = new String[nspec];
double Spec[] = new double[nspec];

// send data arrays with keyword and arguments
if(myGWBrun.results(Name, "species") != 0) {

if(myGWBrun.results(Spec, "concentration aqueous") != 0){
for(int i=0; i<nspec; i++)

fp.println(String.format("%-32s %12.5e molal",
Name[i], Spec[i]));

}
fp.println("");
fp.println("");
if(myGWBrun.results(Spec, "concentration aqueous", "mg/kg") != 0)

{
for(int i=0; i<nspec; i++)

fp.println(String.format("%-32s %12.5e mg/kg",
Name[i], Spec[i]));

}
}
fp.close();

myGWBrun.destroy();

BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));

String input = null;
System.out.println("press return to exit> ");
input = br.readLine();

}
}
catch (Exception e)
{

e.printStackTrace();

86

Plug-in Feature

}
}

}

7.3.5 Java command line
This example of how to run the GWBplugin Example1 on the command line with Java
assumes that you have a Java development kit installed.

To run Example1 on the command line with Java, follow these steps:

// open the command prompt
cmd.exe

// create a working folder and change to that folder
mkdir "%homepath%\GWBplugin"
cd "%homepath%\GWBplugin"

// copy the "src" folder from GWB installation (default install path shown)
copy /Y "C:\Program Files\GWB\src"

// add the GWB installation folder to your path
set path=C:\Program Files\GWB;%path%

// add the JDK bin folder to your path if it is not already there
set path=C:\Program Files\Java\jdk1.7.0_05\bin;%path%

// create a build folder
mkdir class

// add the build folder and the GWBplugin JAR file to your classpath
set classpath=class;C:\Program Files\GWB\src\GWBplugin.jar;%classpath%

// compile the example file
javac GWBplugin_Java_Example1.java -d class

// run the example with Java
// (-Xss 10m increases the stack size, the default stack is usually too small)
java -Xss10m Example1

87

GWB Reference Manual

7.4 Perl
GWB provides a GWBplugin wrapper class contained in the Perl module file
“GWBplugin.pm” which handles dealing with the C data type conversion and calling
the DLL. In order to locate the GWB DLLs the GWBplugin class uses, you must add
the GWB installation directory to the PATH environment variable.

Since Perl is a dynamically typed language, there are some minor differences with
its "results" functions compared to statically typed languages.

To use the GWBplugin class from the GWBplugin module, you must first add the
"src" folder in the GWB installation to Perl’s module search path and then tell it to
use the GWBplugin module.

#! /usr/bin/perl -w

add explicit location of GWBplugin.pm to lib
use lib '/program files/gwb/src';

or by relative path
use lib '.';

use GWBplugin module
use GWBplugin;

The GWBplugin module depends on the Perl Win32::API module. You can install
the Win32::API module with the Perl Package Manager with the following command:

ppm install Win32-API

This is the Perl wrapper class provided in GWBplugin.pm in the "src" directory of
the GWB installation folder:

GWBplugin.pm

package GWBplugin;

our $ANULL = -999999;

sub initialize # (app_name, file_name = 0, cmds = 0)
sub exec_cmd # (uline)
sub results # (value, units = 0, ix = 0, jy = 0)
sub destroy #

7.4.1 Initializing the GWB application
Within your code, first create a GWBplugin object.

88

Plug-in Feature

my $myPlugin = new GWBplugin();

Next, use the “initialize” function to start the GWB application of interest by passing
the application name, an optional output file name, and any command-line type
arguments. The “initialize” function must be called before calling any of the other
functions.

sub initialize # (
app_name,
file_name = 0,
cmds = 0)

Parameters:
app_name

String containing the GWB application name - “rxn”, “spece8”, “react”, “x1t”, or “x2t”.
file_name (optional)

String containing the name of the file you want the GWB output written to. This
can be a zero or an empty string if you do not want the output to be written to a file.
cmds (optional)

String containing command-line options you could normally pass to the application
when running it from the command-line. This can be a zero or an empty string for
defaults.

Command-line options:

-cd Change the working directory to the directory containing the input script
specified with the -i option.

-nocd Do not change the working directory.
-i <input_script> Read initial input commands from the specified file.
-gtd <gtdata_dir> Set directory to search for thermodynamic datasets.
-cond <cond_data> Set the dataset for calculating electrical conductivity.
-d <thermo_data> Set the thermodynamic dataset.
-s <surf_data> Set a dataset of surface sorption reactions.
-iso <isotope_data> Set a dataset of isotope fractionation factors.

Return value
Non-zero on success and zero on failure.

Examples

plug-in SpecE8 with no output written and no command-line options
my $success = $myPlugin->initialize("spece8");

plug-in React with output written to output.txt and no command-line options
my $success = $myPlugin->initialize("react", "output.txt");

plug-in X1t with no output written, no working directory change,

89

GWB Reference Manual

and input read from pb_contam.x1t
my $success = $myPlugin->initialize("x1t", "", "-nocd

-i \"c:/program files/gwb/script/pb_contam.x1t\"");

Function "destroy" can be used at the end of the program to free up the underlying
memory associated with the GWBplugin object.

$myPlugin->destroy();

7.4.2 Configuring and executing calculations
Use the “exec_cmd” function to transmit commands to the GWB plug-in. Each application
has a chapter in the GWB Command Reference that is a comprehensive guide to
the commands available. Use these commands to configure the application and then
send a “go” command to trigger the calculations.

sub exec_cmd # (
uline # command string to be sent to the GWB application

)

Return value
Non-zero on success and zero on failure.

Examples

$myPlugin->exec_cmd("3 mmol H+");
$myPlugin->exec_cmd("2 mmol Ca++");
$myPlugin->exec_cmd("5 mmolar Cl-");
$myPlugin->exec_cmd("go"); # trigger the calculation

7.4.3 Retrieving the results
Transfer calculation results from the GWB application to your program with the “results”
functions. The keywords, arguments, default units, and return types are the same as
those listed in the table in the Report Command chapter of this reference manual.
Use the "results" functions by providing the report command and keywords, optional
desired units, and the node location of choice (X1t and X2t only).

results function
sub results # (value, units = 0, ix = 0, jy = 0)

Parameters:
value

String containing the report command keyword and arguments.
units (optional)

String containing the units you want the results returned in. This can be a zero or
an empty string if you want the results returned in the default units.

90

Plug-in Feature

ix (optional)
X node position. This is only used when running X1t and X2t, otherwise it is ignored.

jy (optional)
Y node position. This is only used when running X2t, otherwise it is ignored.

Return value
Array containing the requested results.

Remarks
The data is returned as an array, even when requesting a single value.
If the command fails for any reason, for example if the requested data doesn’t exist

or the specified unit conversion failed, the data will be filled with ANULL (-999999).
Examples

get aqueous species names
my @species = $myPlugin->results("species");

get aqueous species concentrations in mg/kg
my @conc = $myPlugin->results("concentration aqueous", "mg/kg");

get pH at node 3,5
my ($pH) = $myPlugin->results("pH", "", 3,5);

7.4.4 Perl code examples using the plug-in feature
Normally you would use the GWB plug-in within your program with no output being
written to a file. The following is an example of this:

#! /usr/bin/perl -w

add explicit location of GWBplugin.pm to lib
use lib '/program files/gwb/src';

or by relative path
use lib '.';

use GWBplugin module
use GWBplugin;

create the plug-in object
my $myGWBrun = new GWBplugin();

start the GWB program
if ($myGWBrun->initialize("spece8", "", "-nocd")) {

print "Beginning run.\n";

my @cmds = ("pH = 8", "molality Cl- = .05", "go");
foreach my $cmd (@cmds) {

91

GWB Reference Manual

$myGWBrun->exec_cmd($cmd);
}
print "Finished run.\n\n";

retrieve results
my ($pH) = $myGWBrun->results("pH");

my ($Cl) = $myGWBrun->results("concentration Cl-");
printf("concentration of Cl- in molal is %10.4g\n", $Cl);
($Cl) = $myGWBrun->results("concentration Cl-", "mg/kg");
printf("concentration of Cl- in mg/kg is %10.4g\n", $Cl);

my @species = $myGWBrun->results("species");
my @conc = $myGWBrun->results("concentration aqueous", "mg/kg");
my $nspec = @species;

print "\nThere are " . $nspec . " aqueous species.\n\n";

for(my $i=0; $i<$nspec; $i++) {
printf("%-4s = %10.4g mg/kg\n", $species[$i], $conc[$i]);

}

$myGWBrun->destroy();
}

To familiarize yourself with the plug-in feature, you might want the GWB program’s
normal output and results to be written to the console and to text files. The following
code shows examples of this:

#! /usr/bin/perl -w

add explicit location of GWBplugin.pm to lib
use lib '/program files/gwb/src';

or by relative path
use lib '.';

use GWBplugin module
use GWBplugin;

print "Starting program SpecE8\n";

my $myGWBrun = new GWBplugin();

if ($myGWBrun->initialize("spece8",
"test_output.txt",
"-nocd \
-i \"c:/program files/gwb/script/freshwater.sp8\" \

92

Plug-in Feature

-s \"c:/program files/gwb/gtdata/feoh.sdat\"")) {

print "writing output to test_output.txt\n";
$myGWBrun->exec_cmd("show surfaces");
print "Executing test\n";
open FP, ">test_results.txt" or die $!;
print "writing results to test_results.txt\n";
my @cmds = ("pH = 8", "molality Cl- = .05", "go");
foreach my $cmd (@cmds){

$myGWBrun->exec_cmd($cmd);
}

my ($pH) = $myGWBrun->results("pH");
printf FP ("pH = %4.1f\n", $pH);

my ($Cl) = $myGWBrun->results("concentration Cl-");
printf FP ("Cl = %12.5e molal\n", $Cl);

($Cl) = $myGWBrun->results("concentration Cl-", "mg/kg");
if($Cl ne $ANULL) {

printf FP ("Cl = %12.5e mg/kg\n\n", $Cl);
}
else {

print FP "unit conversion failed - Cl = ANULL\n\n";
}

my @Name = $myGWBrun->results("species");
my @Spec = $myGWBrun->results("concentration aqueous");
my $nspec = @Name;
for(my $i=0; $i<$nspec; $i++) {

printf FP ("%-32s %12.5e molal\n", $Name[$i], $Spec[$i]);
}
@Spec = $myGWBrun->results("concentration aqueous", "mg/kg");
print FP "\n\n";
for (my $i=0; $i<$nspec; $i++) {

printf FP ("%-32s %12.5e mg/kg\n", $Name[$i], $Spec[$i]);
}

$myGWBrun->destroy();
print "press return to exit> ";
<>;
close(FP);

}

7.4.5 Perl command line
This example of how to run the GWBplugin Example1 on the command line with Perl
assumes that you have (64-bit) ActivePerl for Windows installed. This example should

93

GWB Reference Manual

work with other versions of Perl, but instructions on how to obtain the Win32::API
module may be different.

To run Example1 on the command line with Perl, follow these steps:

open the command prompt
cmd.exe

create a working folder and change to that folder
mkdir "%homepath%\GWBplugin"
cd "%homepath%\GWBplugin"

copy the "src" folder from GWB installation (default install path shown)
copy /Y "C:\Program Files\GWB\src"

add the GWB installation folder to your path
set path=C:\Program Files\GWB;%path%

if you haven’t already installed the Win32::API module, do so now
ppm install Win32-API

run the example with Perl
perl GWBplugin_Perl_Example1.pl

94

Plug-in Feature

7.5 Python
GWB provides a GWBplugin wrapper class contained in the Python script file
“GWBplugin.py” which handles dealing with the C data type conversion and calling
the DLL. In order to locate the GWB DLLs the GWBplugin class uses, you must add
the GWB installation directory to the PATH environment variable.

Since Python is a dynamically typed language, there are some minor differences
with its “results” functions compared to statically typed languages.

To include GWBplugin.py in your Python script, you first need to append the “src”
folder of the GWB installation to sys.path in Python, then import the class.

import os,sys

append full path to GWBplugin.py ...
sys.path.append("c:/program files/gwb/src")

or relative path ...
sys.path.append(os.path.abspath('.'))

import GWBplugin class
from GWBplugin import *

This is the Python wrapper class provided in GWBplugin.py in the “src” directory
of the GWB installation folder:

GWBplugin.py

ANULL = -999999

class GWBplugin:
Name = "GWBplugin"
def _ _init_ _(self):
def initialize (self, app_name, file_name = None, cmds = None):
def exec_cmd (self, uline):
def results (self, value, units = None, ix = 0, jy = 0):
def destroy (self):

7.5.1 Initializing the GWB application
Within your code, first create a GWBplugin object.

myPlugin = GWBplugin()

Next, use the “initialize” function to start the GWB application of interest by passing
the application name, an optional output file name, and any command-line type

95

GWB Reference Manual

arguments. The “initialize” function must be called before calling any of the other
functions.

def initialize (
self,
app_name,
file_name = None,
cmds = None):

Parameters:
app_name

String containing the GWB application name - “rxn”, “spece8”, “react”, “x1t”, or “x2t”.
file_name (optional)

String containing the name of the file you want the GWB output written to. This
can be None or an empty string if you do not want the output to be written to a file.
cmds (optional)

String containing command-line options you could normally pass to the application
when running it from the command-line. This can be None or an empty string for
defaults.

Command-line options:

-cd Change the working directory to the directory containing the input script
specified with the -i option.

-nocd Do not change the working directory.
-i <input_script> Read initial input commands from the specified file.
-gtd <gtdata_dir> Set directory to search for thermodynamic datasets.
-cond <cond_data> Set the dataset for calculating electrical conductivity.
-d <thermo_data> Set the thermodynamic dataset.
-s <surf_data> Set a dataset of surface sorption reactions.
-iso <isotope_data> Set a dataset of isotope fractionation factors.

Return value
Non-zero on success and zero on failure.

Examples

plug-in SpecE8 with no output written and no command-line options
success = myPlugin.initialize("spece8")

plug-in React with output written to output.txt and no command-line options
success = myPlugin.initialize("react", "output.txt")

plug-in X1t with no output written, no working directory change,
and input read from pb_contam.x1t
success = myPlugin.initialize("x1t", "", "-nocd

-i \"c:/program files/gwb/script/pb_contam.x1t\"")

96

Plug-in Feature

Function “destroy" can be used at the end of the program to free up the underlying
memory associated with the GWBplugin object.

myPlugin.destroy()

7.5.2 Configuring and executing calculations
Use the “exec_cmd” function to transmit commands to the GWB plug-in. Each application
has a chapter in the GWB Command Reference that is a comprehensive guide to
the commands available. Use these commands to configure the application and then
send a “go” command to trigger the calculations.

def exec_cmd (
self,
uline # command string to be sent to the GWB application

):

Return value
Non-zero on success and zero on failure.

Examples

myPlugin.exec_cmd("3 mmol H+")
myPlugin.exec_cmd("2 mmol Ca++")
myPlugin.exec_cmd("5 mmolar Cl-")
myPlugin.exec_cmd("go") # trigger the calculation

7.5.3 Retrieving the results
Transfer calculation results from the GWB application to your program with the “results”
functions. The keywords, arguments, default units, and return types are the same as
those listed in the table in the Report Command chapter of this reference manual.
Use the “results” functions by providing the report command and keywords, optional
desired units, and the node location of choice (X1t and X2t only).

results function
def results (self, value, units = None, ix = 0, jy = 0):

Parameters:
value

String containing the report command keyword and arguments.
units (optional)

String containing the units you want the results returned in. This can be None or
an empty string if you want the results returned in the default units.
ix (optional)

X node position. This is only used when running X1t and X2t, otherwise it is ignored.
jy (optional)

97

GWB Reference Manual

Y node position. This is only used when running X2t, otherwise it is ignored.
Return value

Array containing the requested results.
Remarks

The data is returned as an array, even when requesting a single value.
If the command fails for any reason, for example if the requested data doesn’t exist

or the specified unit conversion failed, the data will be filled with ANULL (-999999).
Examples

get aqueous species names
Species = myPlugin.results("species")

get aqueous species concentrations in mg/kg
Conc = myPlugin.results("concentration aqueous", "mg/kg")

get pH at node 3,5
pH = myPlugin.results("pH", "", 3,5)[0]

7.5.4 Python code examples using the plug-in feature
Normally you would use the GWB plug-in within your program with no output being
written to a file. The following is an example of this:

import os,sys

append full path to GWBplugin.py ...
sys.path.append("c:/program files/gwb/src")

or relative path ...
sys.path.append(os.path.abspath('.'))

import GWBplugin class
from GWBplugin import *

create the plug-in object
myGWBrun = GWBplugin()

start the GWB program
if myGWBrun.initialize("spece8", "", "-nocd"):

print "Beginning run."

cmds = ["pH = 8", "molality Cl- = .05", "go"]
for cmd in cmds:

myGWBrun.exec_cmd(cmd)

print "Finished run.\n"

98

Plug-in Feature

#retrieve results
pH = myGWBrun.results("pH")[0]

Cl = myGWBrun.results("concentration Cl-")[0]
print "concentration of Cl- in molal is %10.4g" % Cl
Cl = myGWBrun.results("concentration Cl-", "mg/kg")[0]
print "concentration of Cl- in mg/kg is %10.4g" % Cl

species = myGWBrun.results("species")
conc = myGWBrun.results("concentration aqueous", "mg/kg")

print "\nThere are" , len(species) , "aqueous species.\n"
for i in range(len(species)):

print "%-4s = %10.4g mg/kg" % (species[i], conc[i])

myGWBrun.destroy()

To familiarize yourself with the plug-in feature, you might want the GWB program’s
normal output and results to be written to the console and to text files. The following
code shows examples of this:

import os,sys

append full path to GWBplugin.py ...
sys.path.append("c:/program files/gwb/src")

or relative path ...
sys.path.append(os.path.abspath('.'))

import GWBplugin class
from GWBplugin import *

print "Starting program SpecE8"

myGWBrun = GWBplugin()

if myGWBrun.initialize("spece8",
"test_output.txt",
"-nocd \
-i \"c:/program files/gwb/script/freshwater.sp8\" \
-s \"c:/program files/gwb/gtdata/feoh.sdat\""):

print "writing output to test_output.txt"
myGWBrun.exec_cmd("show surfaces")
print "Executing test"
fp = open("test_results.txt", "w")
if fp.closed:

stderr.write("can’t open test_results.txt")

99

GWB Reference Manual

else:
print "writing results to test_results.txt"
cmds = ["pH = 8", "molality Cl- = .05", "go"]
for cmd in cmds:

myGWBrun.exec_cmd(cmd)

pH = myGWBrun.results("pH")[0]
fp.write("pH = %4.1f\n" % pH)

Cl = myGWBrun.results("concentration Cl-")[0]
fp.write("Cl = %12.5e molal\n" % Cl)

Cl = myGWBrun.results("concentration Cl-", "mg/kg")[0]
if Cl != ANULL:

fp.write("Cl = %12.5e mg/kg\n\n" % Cl)
else:

fp.write("unit conversion failed - Cl = ANULL\n\n")

Name = myGWBrun.results("species")
Spec = myGWBrun.results("concentration aqueous")
for i in range(len(Name)):

fp.write("%-32s %12.5e molal\n" % (Name[i], Spec[i]))
Spec = myGWBrun.results("concentration aqueous", "mg/kg")
fp.write("\n\n")
for i in range(len(Name)):

fp.write("%-32s %12.5e mg/kg\n" % (Name[i], Spec[i]))
fp.close()

myGWBrun.destroy()
raw_input("press return to exit> ")

7.5.5 Python command line
The GWB plug-in has been tested with Python for Windows version 3.7. The version
of Python you are using must be the same as the version of GWB installed (32-bit
vs. 64-bit).

To run the GWBplugin Example1 on the command line with Python, follow these
steps:

open the command prompt
cmd.exe

create a working folder and change to that folder
mkdir "%homepath%\GWBplugin"
cd "%homepath%\GWBplugin"

copy the "src" folder from GWB installation (default install path shown)
copy /Y "C:\Program Files\GWB\src"

100

Plug-in Feature

add the GWB installation folder to your path
set path=C:\Program Files\GWB;%path%

run the example with Python
python GWBplugin_Python_Example1.py

101

GWB Reference Manual

7.6 MATLAB
GWB provides a GWBplugin wrapper class contained in the MATLAB script file
"GWBplugin.m" which handles dealing with the C data type conversion and calling
the DLL. In order to locate the GWB DLLs the GWBplugin class uses, you must add
the GWB installation directory to the PATH environment variable.

Since MATLAB is a dynamically typed language, there are some minor differences
with its "results" functions compared to statically typed languages.

To begin, locate the directory in which the GWB software is installed on your
computer. Most commonly, the installation is in directory "C:\Program Files\Gwb" for
64 bit GWB, which we’ll assume here, or in "C:\Program Files (x86)\Gwb" for the 32
bit version.

Add the GWB installation directory (e.g., "C:\Program Files\Gwb") to your PATH
environmental variable, either from the Windows Control Panel before starting MATLAB,
or by issuing the command

setenv(’PATH’,[getenv(’PATH’),’;C:\Program Files\GWB’]);

from within MATLAB.
Next, set up a C compiler in MATLAB using the command "mex -setup", as described

in the MATLAB documentation. The compiler might be cl, icl, or gcc; it should already
have been installed on your computer.

Now, compile within MATLAB the file "GWBpluginMex.cpp" and associated header
file "class_handle.hpp", which are located in the "src" subdirectory, to produce a
MATLAB library. The command to do this is

mex "C:\Program Files\Gwb\src\GWBpluginMex.cpp"
-I"C:\Program Files\Gwb\src"
-L"C:\Program Files\Gwb" -lgwbplugin

7.6.1 GWBplugin MATLAB wrapper class overview
This is a synopsis of the MATLAB wrapper class provided in "GWBplugin.m", which
can be found in the "src" directory of the GWB installation folder:

classdef GWBplugin < handle
properties (SetAccess = private, Hidden = true)

objectHandle;
end
methods

function this = GWBplugin(varargin)
this.objectHandle = GWBpluginMex(’new’);
GWBpluginMex(’initialize’, this.objectHandle, varargin{:});

end

102

Plug-in Feature

function delete(this)
GWBpluginMex(’delete’, this.objectHandle);

end

function exec_cmd(this, varargin)
GWBpluginMex(’exec_cmd’, this.objectHandle, varargin{:});

end

function result = results(this, varargin)
result = GWBpluginMex(’results’, this.objectHandle, varargin{:});

end
end

end

7.6.2 Initializing the GWB application
Within your MATLAB script you begin by creating a "GWBplugin" object, passing the
application name (e.g., ’spece8’), an optional file name for the GWB application to
write output to, and any command-line type arguments.

myGWBrun = GWBplugin(app_name, file_name, cmds):

Parameters:
app_name

A string containing the GWB application name you wish to use. Valid options are
rxn, spece8, react, x1t, and x2t.
file_name (optional)

A string containing the name of the file you want the GWB application to write its
output to. Omit or pass an empty array if you do not want to write output to a file.
cmds (optional)

A string containing command-line options you could normally pass to the application
when running it from the command-line. Can be omitted or an empty array.

Command-line options:

-cd Change the working directory to the directory containing the input script
specified with the -i option.

-nocd Do not change the working directory.
-i <input_script> Read initial input commands from the specified file.
-gtd <gtdata_dir> Set directory to search for thermodynamic datasets.
-cond <cond_data> Set the dataset for calculating electrical conductivity.
-d <thermo_data> Set the thermodynamic dataset.
-s <surf_data> Set a dataset of surface sorption reactions.
-iso <isotope_data> Set a dataset of isotope fractionation factors.

Return value

103

GWB Reference Manual

The handle of the GWB plugin, or zero on failure.
Remarks

For this function to succeed you must have your GWB installation folder added to
the PATH environment variable so all the required DLLs can be found.

Output to the file is not performed in MATLAB until the GWBplugin object has been
cleared from memory. To do this, enter the MATLAB ’clear’ command.
Examples

% plug-in SpecE8 with no output written and no options
myGWBrun = GWBplugin(’spece8’);
...

% plug-in React with output written to output.txt and no options
myGWBrun = GWBplugin(’react’,’output.txt’);
...

% plug-in X1t with no output written, no working directory change,
% and read input from pb_contam.x1t
myGWBrun = GWBplugin(’x1t’,[],’-nocd

-i \"c:/Program Files/gwb/script/pb_contam.x1t\"’);

7.6.3 Configuring and executing calculations
Use the “exec_cmd” function to transmit commands to the GWB plug-in. Each application
has a chapter in the GWB Command Reference that is a comprehensive guide to
the commands available. Use these commands to configure the application and then
send a “go” command to trigger the calculations.

exec_cmd(myGWBrun, uline):

Parameter
uline

A string containing the command you wish to send to the GWB application.
Return value

Non-zero on success and zero on failure.
Remarks

You may include more than one GWB command in a single call.
Examples

exec_cmd(myGWBrun, ’3 mmol H+’)
exec_cmd(myGWBrun, ’2 mmol/kg Ca++’, ’4 mmol/kg Cl-’, ’go’)

7.6.4 Retrieving the results
Transfer calculation results from the GWB application to your program with the “results”
function. The keywords, arguments, default units, and return types are the same as

104

Plug-in Feature

those listed in the table in the Report Command chapter of this reference manual.
Use the "results" functions by providing the report command and keywords, optional
desired units, and the node location of choice (X1t and X2t only).

results(myGWBrun, value, units, ix, jy):

Parameters:
value

String containing the report command keyword and arguments.
units (optional)

String containing the units you would like the results returned in. Omit or pass an
empty array if you want default units.
ix (optional)

X node position. This is only used when running X1t and X2t, otherwise it is ignored.
jy (optional)

Y node position. This is only used when running X2t, otherwise it is ignored.
Return value

Array containing the requested results.
Remarks

If you request a single value, it is returned as an array of length one.
If the command fails for any reason, for example if the requested data doesn’t exist

or the specified unit conversion failed, an empty array is returned.
Parameter ix is used when running X1t and X2t; otherwise it is ignored. Paramter

jy is similarly used only when running X2t.
Examples

Cl = results(myGWBrun,’concentration Cl-’); % in default units
fprintf(’concentration of Cl- in molal is %10.4g\n’,Cl);

Cl = results(myGWBrun,’concentration Cl-’,’mg/kg’); % in different units
fprintf(’concentration of Cl- in mg/kg is %10.4g\n’,Cl);

Name = results(myGWBrun,’species’);
Spec = results(myGWBrun,’concentration aqueous’,’mg/kg’);

fprintf(’\n There are %i aqueous species\n\n’,length(Name));
for i = 1:length(Name)

fprintf(’%-4s = %10.4g mg/kg\n’,Namei,Spec(i));
end

7.6.5 Cleaning up
The "delete" function is designed to free up the underlying memory associated with
the GWBplugin object. Due to a known issue in MATLAB, we recommend you reuse
existing plugin instances, rather than destroy and recreate them.

To reuse an instance, issue the command

105

GWB Reference Manual

exec_cmd(myGWBrun, ’reset’);

7.6.6 MATLAB code examples using the plug-in feature
Normally you would use the GWB plug-in within your program with no output being
written to a file. The following is an example of this:

% Only needed if the GWB install directory is not in the PATH
% environment variable
setenv(’PATH’,[getenv(’PATH’),’;C:\Program Files\Gwb’]);

% Create the plugin object and start the GWB program
myGWBrun = GWBplugin(’spece8’,[],’-nocd’);

disp(’Beginning run’);
exec_cmd(myGWBrun,’pH = 8’,’molality Cl- = .05’,’go’);
disp(’Finished run’);

% Ensure run was successful
if results(myGWBrun,’Success’)

%retrieve results
pH = results(myGWBrun,’pH’);

Cl = results(myGWBrun,’concentration Cl-’); % in default units
fprintf(’concentration of Cl- in molal is %10.4g\n’,Cl);
Cl = results(myGWBrun,’concentration Cl-’,’mg/kg’); % in different units
fprintf(’concentration of Cl- in mg/kg is %10.4g\n’,Cl);

Name = results(myGWBrun,’species’);
Spec = results(myGWBrun,’concentration aqueous’,’mg/kg’);

fprintf(’\n There are %i aqueous species\n\n’,length(Name));
for i = 1:length(Name)

fprintf(’%-4s = %10.4g mg/kg\n’,Name{i},Spec(i));
end

end

To familiarize yourself with the plug-in feature, you might want the GWB program’s
normal output and results to be written to the console and to text files. The following
code shows examples of this:

% Only needed if the GWB install directory is not in the PATH
% environment variable
setenv(’PATH’,[getenv(’PATH’),’;C:\Program Files\Gwb’]);
ANULL = -999999.0;

disp(’Starting program SpecE8’);

106

Plug-in Feature

myGWBrun = GWBplugin(’spece8’,’test_output.txt’, ...
’-nocd -i "C:/Program Files/Gwb/Script/Freshwater.sp8" ...
-s "C:/Program Files/Gwb/Gtdata/FeOH.dat’);

disp(’writing output to test_output.txt’);
exec_cmd(myGWBrun,’show surfaces’); % write to output file

disp(’Executing test’);

fp=fopen(’test_results.txt’, ’w’);
if fp < 0

disp(’cant open test_results.txt’);
else

disp(’writing results to test_results.txt’);
exec_cmd(myGWBrun,’pH = 8’,’molality Cl- = .05’,’go’);

pH = results(myGWBrun,’pH’);
fprintf(fp,’pH = %4.1f \n’, pH);

Cl = results(myGWBrun,’concentration Cl-’);
fprintf(fp,’Cl = %12.5e molal\n’, Cl);

Cl = results(myGWBrun,’concentration Cl-’,’mg/kg’);
if(Cl ~= ANULL)

fprintf(fp,’Cl = %12.5e mg/kg\n\n’, Cl);
else

fprintf(fp,’unit conversion failed - Cl = ANULL\n\n’);
end

Name = results(myGWBrun,’species’);
Spec = results(myGWBrun,’concentration aqueous’);

for i = 1:length(Name)
fprintf(fp, ’%-32s %12.5e molal\n’, Name{i}, Spec(i));

end
fprintf(fp,’\n\n’);

Spec = results(myGWBrun,’concentration aqueous’,’mg/kg’);
for i = 1:length(Name)

fprintf(fp, ’%-32s %12.5e molal\n’, Name{i}, Spec(i));
end

fclose(fp);
end

107

GWB Reference Manual

7.6.7 MATLAB command line
The GWB plug-in has been tested with MATLAB versions 7.9 and 8.0. The version of
MATLAB you are using must be the same as the version of GWB installed (32-bit vs.
64-bit).

To run the GWBplugin Example1 on the command line with MATLAB, follow these
steps. First, after opening MATLAB, create a working folder and change to that folder

mkdir ’GWBplugin’
cd ’GWBplugin’

Copy the files “GWBplugin.m” and “GWBplugin_Matlab_example1.m” from the “src”
folder of GWB installation into the new folder

copyfile (’C:\Program Files\GWB\src\GWBplugin.m’, pwd)
copyfile (’C:\Program Files\GWB\src\GWBplugin_Matlab_example1.m’, pwd)

Compile the MATLAB wrapper with the “mex” command

mex "C:\Program Files\Gwb\src\GWBpluginMex.cpp"
-I"C:\Program Files\Gwb\src"
-L"C:\Program Files\Gwb" -lgwbplugin

You are now ready to run the example script

GWBplugin_Matlab_example1

which should produce output similar to the following:

>>GWBplugin_Matlab_example1

Beginning run.
Finished run.

concentration of Cl- in molal is 0.05
concentration of Cl- in mg/kg is 1770

There are 4 aqueous species.

Cl- = 1770 mg/kg
H+ = 1.139e-05 mg/kg
HCl = 1.234e-11 mg/kg
OH- = 0.02039 mg/kg

Follow the same procedure to run the second example script, “GWBplu-
gin_Matlab_example2.m”. Congratulations on plugging into the GWB!

108

Plug-in Feature

7.7 Other languages
Any language that can load DLLs, call C functions from them, and handle some basic
C data types should be able to use the GWB plug-in feature. You must have your GWB
installation folder added to the PATH environment variable so that all of the required
DLLs can be found. The C data types that need to be handled are void*, char*, int*,
double*, and int. If the language you want to use is similar to one that a wrapper is
provided for, a good place to start is to look at how that wrapper is implemented.

To create a wrapper class, interface, or whatever makes sense for your target
language, follow these steps:

Load the GWBplugin DLL. Generally this will be done during run-time with a call to
LoadLibrary or whatever the equivalent is in the language. Some languages, mostly
compiled and linked ones, can instead link to the export library GWBplugin.lib.

Tell your program about the functions you will call from the DLL. This is usually
done by giving prototypes in some way or by directly including GWBplugin.h.
The DLL functions and their prototypes are listed in the next section.

Encapsulate. Create functions in your wrapper that call the corresponding DLL
function and handle data type conversions. The wrapper, if possible, should also
have a void* member variable that can be passed by address to the DLL functions.
This void* member variable keeps track of a particular GWBplugin instance.

7.7.1 GWBplugin.dll function prototypes
Following is the list of the definitions and functions exported from GWBplugin.dll that
your wrapper will need to use. Note that function parameters labeled as (optional)
are in fact required when you call the C function. It is suggested, however, that you
make these arguments optional for your own wrapper if possible and use the provided
suggested defaults.

// GWBplugin.h

#define ANULL -999999.0 // marker for an undefined value

extern "C" _ _declspec(dllexport)
int c_initialize(void* plugin, const char* app_name,

const char* file_name, const char* cmds);

extern "C" _ _declspec(dllexport)
int c_exec_cmd(void* plugin, char* uline);

extern "C" _ _declspec(dllexport)
int c_results(void* plugin, void* data, const char* value,

const char* units, int ix, int jy);

109

GWB Reference Manual

extern "C" _ _declspec(dllexport)
int c_results_c(void* plugin, void* data, const char* value,

const char* units, int ix, int jy, int* slen);

extern "C" _ _declspec(dllexport)
int c_destroy(void* plugin);

7.7.2 Initializing the GWB application
Within your code, first create a void* equivalent variable or something that can hold a
pointer data type... i.e. that is 32-bits long (for a 32-bit application) or 64-bits long (for
a 64-bit application). This will be a member variable of your class if possible.

Next, use the “c_initialize” function to start the GWB application of interest by
passing the address of the void* variable, the application name, an optional output
file name, and any command-line type arguments. The “c_initialize” function must be
called before calling any of the other functions.

int c_initialize (
void* plugin,
const char* app_name,
const char* file_name,
const char* cmds

);

Parameters:
plugin

A dereferenceable pointer that points to a pointer which can be assigned a value.
It keeps track of a particular plugged-in GWB application.
app_name

String containing the GWB application name - “rxn”, “spece8”, “react”, “x1t”, or “x2t”.
file_name (optional) (default: NULL or empty string)

String containing the name of the file you want the GWB output written to. This
can be NULL or an empty string if you do not want the output to be written to a file.
cmds (optional) (default: NULL or empty string)

String containing command-line options you could normally pass to the application
when running it from the command-line. This can be NULL or an empty string.

110

Plug-in Feature

Command-line options:

-cd Change the working directory to the directory containing the input script
specified with the -i option.

-nocd Do not change the working directory.
-i <input_script> Read initial input commands from the specified file.
-gtd <gtdata_dir> Set directory to search for thermodynamic datasets.
-cond <cond_data> Set the dataset for calculating electrical conductivity.
-d <thermo_data> Set the thermodynamic dataset.
-s <surf_data> Set a dataset of surface sorption reactions.
-iso <isotope_data> Set a dataset of isotope fractionation factors.

Return value
Non-zero on success and zero on failure.

Examples
Some examples of how to start the GWB plug-in in various ways:

void* myPlugin = NULL;

// plug-in SpecE8 with no output written and no command-line options
int success = c_initialize(&myPlugin, "spece8");

// plug-in React with output written to output.txt and no command-line options
int success = c_initialize(&myPlugin, "react", "output.txt");

// plug-in X1t with no output written, no working directory change,
// and input read from pb_contam.x1t
int success = c_initialize(&myPlugin, "x1t", NULL, "-nocd

-i \"c:/program files/gwb/script/pb_contam.x1t\"");

Function "c_destroy" can be used at the end of the program to free up the underlying
memory associated with the plugged-in GWB application.

c_destroy(&myPlugin);

7.7.3 Configuring and executing calculations
Use the “c_exec_cmd” function to transmit commands to the GWB plug-in. Each
application has a chapter in the GWB Command Reference that is a comprehensive
guide to the commands available. Use these commands to configure the application
and then send a “go” command to trigger the calculations.

int c_exec_cmd(
void* plugin,
char* uline

);

111

GWB Reference Manual

Parameters:
plugin

A dereferenceable pointer that has already been used with c_initialize. It keeps
track of a particular plugged-in GWB application.
uline

String containing the command to be sent to the GWB application.
Return value

Non-zero on success and zero on failure.
Examples

c_exec_cmd(&myPlugin, "3 mmol H+");
c_exec_cmd(&myPlugin, "2 mmol Ca+");
c_exec_cmd(&myPlugin, "5 mmolar Cl-");
c_exec_cmd(&myPlugin, "go");

7.7.4 Retrieving the results
Transfer calculation results from the GWB application to your program with the
“c_results” function. The keywords, arguments, default units, and return types are the
same as those listed in the table in the Report Command chapter of this reference
manual. Use the "c_results" function by providing the plugin parameter, the address
of a data block to fill, the report command and keywords, optional desired units, and
the node location of choice (X1t and X2t only).

int c_results(
void* plugin,
void* data,
const char* value,
const char* units,
int ix,
int jy

);

Parameters:
plugin

A dereferenceable pointer that has already been used with c_initialize. It keeps
track of a particular plugged-in GWB application.
data

Address of data block to fill. This can be NULL to determine data block size.
value

String containing the report command keyword and arguments.
units (optional) (default: NULL or empty string)

String containing the units you want the results returned in. This can be NULL or
an empty string if you want the results returned in the default units.
ix (optional) (default: 0)

X node position. This is only used when running X1t and X2t, otherwise it is ignored.

112

Plug-in Feature

jy (optional) (default: 0)
Y node position. This is only used when running X2t, otherwise it is ignored.

Return value
The number of values written (or to be written) to the data block.

Remarks
To determine the size of data block you will need, first call this function with the

data parameter as NULL and with the rest of the parameters filled. If you know that
the report command you are using only returns a single value, you can simply pass
a pointer to the correct data type. See the Report Command chapter for details on
data types and available keywords.

If the command fails for any reason, for example if the requested data doesn’t exist
or the specified unit conversion failed, the data will be filled with ANULL (-999999.0).
For this reason, you should "#define ANULL -999999.0" (or language equivalent) in
your wrapper.

For languages that are dynamically typed (e.g. Python and Perl), you will either
need to create multiple wrapper "results" functions (one for each possible data type:
int, double, char*) or pass the expected type as an extra parameter. It is often best to
omit the data parameter in the wrapper function. You then can call "c_results" with a
NULL value for data to get the size, allocate C compatible memory, call "c_results"
with the data parameter, convert data, and then return an array of the results. See
GWBplugin.pm or GWBplugin.py for examples of this.
Examples

// get aqueous species names
int ndata = c_results(&myPlugin, NULL, "species");
char** Species = (char**) malloc(sizeof(char*) * ndata);
c_results(&myPlugin, Species, "species");

// get aqueous species concentrations in mg/kg
double* Conc = (double*) malloc(sizeof(double) * ndata);
c_results(&myPlugin, Conc, "concentration aqueous", "mg/kg");

// get pH at node 3,5
double pH = ANULL;
c_results(&myPlugin, &pH, "pH", NULL, 3, 5);

If you are retrieving string values and you need to know the string lengths for
conversion purposes, you will need to use the "c_results_c" function. It is equivalent
to the "c_results" function, but it also takes an extra parameter which will store the
length of the strings.

int c_results_c(
void* plugin,
void* data,
const char* value,
const char* units,

113

GWB Reference Manual

int ix,
int jy,
int* slen // address of data block to fill with retrieved string lengths

);

Examples

// get aqueous species names
int ndata = c_results(&myPlugin, NULL, "species");
char** Species = (char**) malloc(sizeof(char*) * ndata);
int* Lengths = (int*) malloc(sizeof(int) * ndata);
c_results_c(&myPlugin, Species, "species", NULL, 0, 0, Lengths);

114

Units Recognized

The following is a complete table of the unit names recognized by the GWB. The
qualifier “free” specifies that the constraint applies to the free rather than to the bulk
entry. Use the “log” qualifier to set the variable on a logarithmic scale. Examples:

Cl- 4.1 mg/kg
Cl- 4.1 free mg/kg
Cl- 0.612784 log free mg/kg

Dimension Units

Mass and mol mmol umol nmol
Concentration molal mmolal umolal nmolal

mol/kg mmol/kg umol/kg nmol/kg
mol/l mmol/l umol/l nmol/l
kg g mg ug
ng
g/kg mg/kg ug/kg ng/kg
wt fraction wt%
g/l mg/l ug/l ng/l
eq meq ueq neq
eq/kg meq/kg ueq/kg neq/kg
eq/l meq/l ueq/l neq/l
cm3 m3 km3 l
mol/cm3 mmol/cm3 umol/cm3 nmol/cm3
kg/cm3 g/cm3 mg/cm3 ug/cm3
ng/cm3
mol/m3 mmol/m3 umol/m3 nmol/m3
kg/m3 g/m3 mg/m3 ug/m3
ng/m3
vol. fract. volume%

115

GWB Reference Manual

Dimension Units

Activity activity ratio

Fugacity fugacity

Electrical V mV pe
Potential (Eh)

pH pH

Percentage %

Time s min hr day
mon yr m.y.

Distance mm cm m km
in ft mi

Reaction Rate mol/s mmol/s umol/s nmol/s
kg/s g/s mg/s ug/s
ng/s
cm3/s m3/s l/s gal/s
ft3/s
mol/min mmol/min umol/min nmol/min
kg/min g/min mg/min ug/min
ng/min
cm3/min m3/min l/min gal/min
ft3/min
mol/hr mmol/hr umol/hr nmol/hr
kg/hr g/hr mg/hr ug/hr
ng/hr
cm3/hr m3/hr l/hr gal/hr
ft3/hr
mol/day mmol/day umol/day nmol/day
kg/day g/day mg/day ug/day
ng/day
cm3/day m3/day l/day gal/day
ft3/day
mol/yr mmol/yr umol/yr nmol/yr
kg/yr g/yr mg/yr ug/yr
ng/yr
cm3/yr m3/yr l/yr gal/yr
ft3/yr

116

Units Recognized

Dimension Units

Reaction Rate mol/m.y. mmol/m.y. umol/m.y. nmol/m.y.
kg/m.y. g/m.y. mg/m.y. ug/m.y.
ng/m.y.
cm3/m.y. m3/m.y. l/m.y. gal/m.y.
ft3/m.y.
mol/cm3/s mmol/cm3/s umol/cm3/s nmol/cm3/s
kg/cm3/s g/cm3/s mg/cm3/s ug/cm3/s
ng/cm3/s
cm3/cm3/s volume%/s
mol/cm3/min mmol/cm3/min umol/cm3/min nmol/cm3/min
kg/cm3/min g/cm3/min mg/cm3/min ug/cm3/min
ng/cm3/min
cm3/cm3/min volume%/min
mol/cm3/hr mmol/cm3/hr umol/cm3/hr nmol/cm3/hr
kg/cm3/hr g/cm3/hr mg/cm3/hr ug/cm3/hr
ng/cm3/hr
cm3/cm3/hr volume%/hr
mol/cm3/day mmol/cm3/day umol/cm3/day nmol/cm3/day
kg/cm3/day g/cm3/day mg/cm3/day ug/cm3/day
ng/cm3/day
cm3/cm3/day volume%/day
mol/cm3/yr mmol/cm3/yr umol/cm3/yr nmol/cm3/yr
kg/cm3/yr g/cm3/yr mg/cm3/yr ug/cm3/yr
ng/cm3/yr
cm3/cm3/yr volume%/yr
mol/cm3/m.y. mmol/cm3/m.y. umol/cm3/m.y. nmol/cm3/m.y.
kg/cm3/m.y. g/cm3/m.y. mg/cm3/m.y. ug/cm3/m.y.
ng/cm3/m.y.
cm3/cm3/m.y. volume%/m.y.
mol/m3/s mmol/m3/s umol/m3/s nmol/m3/s
kg/m3/s g/m3/s mg/m3/s ug/m3/s
ng/m3/s
m3/m3/s
mol/m3/min mmol/m3/min umol/m3/min nmol/m3/min
kg/m3/min g/m3/min mg/m3/min ug/m3/min
ng/m3/min
m3/m3/min

117

GWB Reference Manual

Dimension Units

Reaction Rate mol/m3/hr mmol/m3/hr umol/m3/hr nmol/m3/hr
kg/m3/hr g/m3/hr mg/m3/hr ug/m3/hr
ng/m3/hr
m3/m3/hr
mol/m3/day mmol/m3/day umol/m3/day nmol/m3/day
kg/m3/day g/m3/day mg/m3/day ug/m3/day
ng/m3/day
m3/m3/day
mol/m3/yr mmol/m3/yr umol/m3/yr nmol/m3/yr
kg/m3/yr g/m3/yr mg/m3/yr ug/m3/yr
ng/m3/yr
m3/m3/yr
mol/m3/m.y. mmol/m3/m.y. umol/m3/m.y. nmol/m3/m.y.
kg/m3/m.y. g/m3/m.y. mg/m3/m.y. ug/m3/m.y.
ng/m3/m.y.
m3/m3/m.y.
molal/s mmolal/s umolal/s nmolal/s
mol/kg/s mmol/kg/s umol/kg/s nmol/kg/s
g/kg/s mg/kg/s ug/kg/s ng/kg/s
cm3/kg/s
molal/min mmolal/min umolal/min nmolal/min
mol/kg/min mmol/kg/min umol/kg/min nmol/kg/min
g/kg/min mg/kg/min ug/kg/min ng/kg/min
cm3/kg/min
molal/hr mmolal/hr umolal/hr nmolal/hr
mol/kg/hr mmol/kg/hr umol/kg/hr nmol/kg/hr
g/kg/hr mg/kg/hr ug/kg/hr ng/kg/hr
cm3/kg/hr
molal/day mmolal/day umolal/day nmolal/day
mol/kg/day mmol/kg/day umol/kg/day nmol/kg/day
g/kg/day mg/kg/day ug/kg/day ng/kg/day
cm3/kg/day
molal/yr mmolal/yr umolal/yr nmolal/yr
mol/kg/yr mmol/kg/yr umol/kg/yr nmol/kg/yr
g/kg/yr mg/kg/yr ug/kg/yr ng/kg/yr
cm3/kg/yr
molal/m.y. mmolal/m.y. umolal/m.y. nmolal/m.y.
mol/kg/m.y. mmol/kg/m.y. umol/kg/m.y. nmol/kg/m.y.
g/kg/m.y. mg/kg/m.y. ug/kg/m.y. ng/kg/m.y.
cm3/kg/m.y.

Flow Rate cm3/s m3/s l/s gal/s
ft3/s
cm3/min m3/min l/min gal/min
ft3/min

118

Units Recognized

Dimension Units

Flow Rate cm3/hr m3/hr l/hr gal/hr
ft3/hr
cm3/day m3/day l/day gal/day
ft3/day
cm3/yr m3/yr l/yr gal/yr
ft3/yr
cm3/m.y. m3/m.y. l/m.y. gal/m.y.
ft3/m.y.

Velocity mm/s cm/s m/s km/s
mm/hr cm/hr m/hr km/hr
mm/day cm/day m/day km/day
mm/mon cm/mon m/mon km/mon
mm/yr cm/yr m/yr km/yr
mm/m.y. cm/m.y. m/m.y. km/m.y.
in/s ft/s mi/s
in/hr ft/hr mi/hr
in/day ft/day mi/day
in/mon ft/mon mi/mon
in/yr ft/yr mi/yr
in/m.y. ft/m.y. mi/m.y.

Specific cm3/cm2/s m3/m2/s ft3/ft2/s
Discharge cm3/cm2/hr m3/m2/hr ft3/ft2/hr

cm3/cm2/day m3/m2/day ft3/ft2/day
cm3/cm2/mon m3/m2/mon ft3/ft2/mon
cm3/cm2/yr m3/m2/yr ft3/ft2/yr
cm3/cm2/m.y. m3/m2/m.y. ft3/ft2/m.y.

Density kg/cm3 g/cm3 mg/cm3 ug/cm3
ng/cm3
kg/m3 g/m3 mg/m3 ug/m3
ng/m3

Titration eq_acid meq_acid ueq_acid neq_acid
Alkalinity eq_acid/kg meq_acid/kg ueq_acid/kg neq_acid/kg

eq_acid/l meq_acid/l ueq_acid/l neq_acid/l
g/kg_as_CaCO3 mg/kg_as_CaCO3 ug/kg_as_CaCO3 ng/kg_as_CaCO3
wt%_as_CaCO3
g/l_as_CaCO3 mg/l_as_CaCO3 ug/l_as_CaCO3 ng/l_as_CaCO3
mol/kg_as_CaCO3 mmol/kg_as_Ca... umol/kg_as_Ca... nmol/kg_as_CaCO3
mol/l_as_CaCO3 mmol/l_as_CaCO3 umol/l_as_CaCO3 nmol/l_as_CaCO3

119

GWB Reference Manual

Dimension Units

Titration Acidity eq_base meq_base ueq_base neq_base
eq_base/kg meq_base/kg ueq_base/kg neq_base/kg
eq_base/l meq_base/l ueq_base/l neq_base/l

Sorption Capacity mol/grock mmol/grock umol/grock nmol/grock

Exchange Capacity eq/grock meq/grock ueq/grock neq/grock

Surface Charge uC/cm2

Pore Volumes pore_volumes

Dynamic Viscosity cp poise

Compressibility /Pa /MPa /atm /bar
/psi

Thermal expansivity /C /F /K /R

Pressure Pa MPa atm bar
psi

Permeability m2 cm2 um2
darcy mdarcy udarcy

Diffusion/Dispersion cm2/s m2/s
Coefficients

Distribution l/kg ml/g ml/mg
Coefficients (KDs)

Activity Coefficients act. coef.

Electrical uS/cm umho/cm
Conductivity

Energy J kJ cal kcal

Energy Content J/mol kJ/mol cal/mol kcal/mol

Heat Capacity J/g/C J/kg/K cal/g/C

Thermal Conductivity W/cm/C W/m/K cal/cm/s/C cal/m/s/C

Internal Heat Source J/cm3/s J/cm3/yr J/m3/s J/m3/yr
cal/cm3/s cal/cm3/yr cal/m3/s cal/m3/yr
W/cm3 W/m3

Thermal W/C W/K J/s/C J/s/K
Transmissivity cal/s/C cal/s/K

Percent Removal % removal

Saturation Q/K

120

Units Recognized

Dimension Units

Deuterium (2H) SMOW-2H

Tritium (3H) TU

Foaming Agents g/l mg/l ug/l ng/l

Carbon 13 PDB

Percent Modern PMC
Carbon

Oxygen Demand g/l mg/l ug/l ng/l

Oxygen 18 SMOW-18O

Sulfur 34 CDT

Odor TON

Turbidity NTU

Corrosivity Cor

Colonies per Volume colonies/ml

Radioactive Emission pCi/l
per Volume

Radioactive Exposure mrem/yr
over Time

Temperature C F K R

Angle radians degrees

Color CU

Number number

Text text

121

122

Graphics Output

Programs Act2, Tact, Gtplot, P2plot, and Xtplot can render plots on a variety of
devices, including your computer screen and black-and-white and color printers. The
programs can also save your plots in a variety of graphics formats; you can later import
these images to documents, web pages, or presentations that you prepare with other
software. Finally, you can copy your plots to the MS Windows clipboard and paste
them directly into other applications, in a format meaningful to the application.

9.1 Clipboard
To copy the current plot to the clipboard, select Edit! Copy from the menubar on the
graphics window, or touch Ctrl+C. You can then paste the plot directly into a variety
of word processing and presentation graphics programs.

If you paste the plot into MS PowerPoint, it will appear as an EMF (an MS Enhanced
Metafile) graphic object. Pasting into Adobe Illustrator places a native AI graphic.

If you paste a plot from Gtplot, P2plot, or Xtplot into MS Excel or a text editor such
as Notepad or MS Word, the numerical values of the data points that make up the
lines on the plot will appear in spreadsheet format.

You can control the format in which the plot is copied to the clipboard by selecting
Edit ! Copy As. You can choose to copy the plot as an AI object, an EMF object, a
bitmap, or the data points in the plot, as tab delimited or space delimited text. Use
the tab delimited option to paste the data into a spreadsheet program like MS Excel.
For examining the data in a text file created with an editor like Notepad or MS Word,
the space delimited option writes a nicely aligned table.

123

GWB Reference Manual

“Paste” in Excel or Word
inserts numerical values

In MS Word or MS Excel, use Paste Special. . . to paste the plot as a picture instead.

“Paste Special...”
in Excel or Word
inserts a picture

9.2 Saving images
In many cases you will want to adjust label positions or change the annotation or
coloring on your plot. Such changes can be made quickly using an illustration program
such as PowerPoint. You can, furthermore, save images and import them into your
reports or documents prepared with a word processor such as MS Word.

124

Graphics Output

To save an image, select File ! Save Image. . . from the menubar, then choose
one of the file formats supported:

PNG (.png)

JPEG (.jpg)

TIFF (.tif)

Bitmap (.bmp)

Enhanced Metafile (.emf)

Adobe Illustrator (.ai)

PDF File (.pdf)

Scalable Vector Graphics (.svg)

Compressed SVG (.svgz)

Encapsulated PostScript (.eps)

Color PostScript (.ps)

Black-and-White PostScript (.ps)

Gtplot, P2plot, and Xtplot also support:

Spreadsheet File (Tab delimited) (.txt)

Text File (Space delimited) (.txt)

The programs save the plot images to files with names such as “Image_1.eps”,
“Image_2.eps”, and so on; the suffix represents the file format (Encapsulated PostScript,
in this case), as shown above.

Note that since each of these graphics formats has its own limitations, the plot once
imported to another program may appear somewhat different than on your computer
screen. Using your illustration program or word processor, however, you can quickly
alter the diagram’s appearance to suit your needs.

When saving a PNG, JPEG, TIFF, or bitmap file, you may specify the quality of
the saved image by choosing its resolution: High, Medium, Low, or Custom. Use
Custom. . . to set the pixel width and height of the image, and to choose whether to
preserve the aspect ratio of the plot.

Use the Spreadsheet File (Tab delimited) or Text File (Space delimited) option
to save into a table the numerical coordinates of the data points on the plot. The
spreadsheet table may be read directly into many popular spreadsheet programs.

Certain graphics types support font embedding. PDF files should always display
and print properly, regardless of fonts installed on the system. PostScript files should
also, if you have used the option to embed fonts. If you may want to edit the PostScript
file, however, you should deselect the option to embed fonts, because programs such

125

GWB Reference Manual

as Adobe Illustrator may restrict your ability to edit a document using embedded fonts
(due to potential copyright/licensing issues). To edit these files, be sure that all of the
required fonts are installed on your computer (see Font for data markers below).

When importing AI graphics to Adobe Illustrator, the program may prompt you to
update the legacy text before you can edit the file. In this case, choose "Update". You
need to release the clipping mask before you attempt to edit individual elements of
the plot. Use the "Ungroup" and "Group" functions when repositioning or modifying
elements.

9.3 Font for data markers
We supply a special TrueType font “GWB Symbol Ext” to provide for data markers on
scatter plots produced with Act2, Tact, Gtplot, P2plot, and Xtplot. The font is installed
automatically on your computer when you install the GWB software.

The “GWB Symbol Ext” font is not subject to copyright, so you can share it freely.
If, for example, you send graphics output to a colleague, you can send her the font to
install on her machine. In this way, the data markers on the plots will appear correctly.
You can download from the GWB website the extended font used beginning with
GWB12, or the legacy “GWB Symbol” font from older versions of the software.

126

Scatter Data

Act2, Tact, Gtplot, P2plot, and Xtplot can overlay data points (scatter data) on the
diagrams that they produce. The preferred way to add scatter data is to import it from
a GSS spreadsheet (“.gss” file, see the Using GSS chapter of the GWB Essentials
Guide). The old method of importing a specially formatted table from a text file still
works, however.

To use this method to overlay a scatter plot of data points onto a diagram, first
prepare a table of the data in a plain text (“.txt”) file created with an editor like Notepad.

The first line in the table is a header that names each column; e.g., Na+, pH, and
so on. Enclose multiword names in quotes (e.g., "Mass solution", "Dissolved solids",
etc.).

Subsequent lines contain the numeric data. A lack of data may be indicated by a
string such as “n/d”. To add error bars to the data points, enter a triplet of values
separated by vertical bars (|). The values represent the minimum extreme of the error
bar, the data point, and the maximum extreme. Exclude blank spaces from the triplet,
or enclose it in quotes. The entry 0.5|2.0|3.5, for example, signifies a data point at 2.0
with an error bar extending from 0.5 to 3.5. The entry 0.5||3.5 prescribes the same
error bar, omitting the symbol representing the data point.

The columns may be separated by any number of spaces or tabs. Comments may
be placed anywhere in the table following a “#” sign. Comments extend from the #
sign to the end of the line. You may also include, as separators in the table, blank
lines or lines of dashes (-) underscores (_), or equal signs (=).

You may represent individual data points with a special symbol from among the
choices in Figure 9.1, a color from among the choices in Figure 9.2, and a point
size. To do so, append any or all of the following to the data line in question: the
symbol name, its color, and its point size, using a string such as “12pt”. Beginning with
GWB12, the names of the unfilled markers (box, circle, delta, del, caution, mobius,
and pentagram) can be appended with a cardinal direction (-n, -s, -e, -w) to produce
additional shapes (e.g. box-n specifies a box in which the “north”, or upper half, is
filled). The box and caution symbols can additionally be appended with intercardinal
directions (-nw, -se, -sw, -ne).

To load the dataset, select File ! Open ! Scatter Data. . . . Choosing the file
selection dialog’s Edit button allows you to modify the contents of the scatter data file.

127

GWB Reference Manual

square box
blot circle
triangle delta
yield del

diamond caution
bullet degree
star pentagram
hourglass mobius

C plus � cross

Figure 10.1 Symbols for plotting scatter data.

To see the changes on the diagram, use the Open button to reload the data file after
saving the changes. You may clear the scatter data by choosing the OFF button.

10.1 Act2 and Tact
To overlay a scatter plot of data points onto an Act2 or Tact diagram, first prepare a
table of the data in terms of log activities and fugacities. The first line identifies each
of the table’s columns in terms of a species or gas name, the ratio of two species or
gases, or with the special labels “pH”, “Eh”, “pe” and “T(C)”. The species or gas names
should be those that appear on the diagram axes, or the original basis members of the
thermodynamic dataset. When the axis variable is an activity ratio, the label should
be formatted as numerator species^power/denominator species^power. A power of
1 does not need to be written explicitly. The activity ratio aCaCC/a2HC, for example,
should be written Ca++/H+^2.

Subsequent lines contain the numeric data in logarithmic form, except for the linear
variables pH, Eh, pe, and temperature data. An example of a table dataset to be used
with Act2 is

pH Na+ Ca++ HCO3-

6.5 -4.3 -3.9 -3.3 red square 12pt
5.9 -3.2 -5.1 -4.0 # sample UI-4
6.8 -4.4 -3.6 n/d

Once the table is prepared, click on File ! Open ! Scatter Data. . . to select the
dataset. The program will read the data and project them onto the diagram. The Act2
and Tact command

scatter dataset_name

serves the same purpose.

128

Scatter Data

Aquamarine Green yellow Medium forest green Red
Black Grey Medium turquoise Regal blue
Blue Grey (10%) Medium slate blue Salmon

Blue violet Grey (20%) Medium spring green Sandy brown
Brown Grey (30%) Medium orchid Sea green

Cadet blue Grey (40%) Medium violet red Sienna
Coral Grey (50%) Medium goldenrod Sky blue

Cornflower blue Grey (60%) Medium aquamarine Slate blue
Cyan Grey (70%) Medium blue Spring green

Dark slate blue Grey (80%) Medium sea green Steel blue
Dark turquoise Grey (90%) Midnight blue Tan

Dark orchid Grey (95%) Navy Thistle
Dark green Honeydew Navy blue Turquoise

Dark slate grey Indian red Old lace Violet
Dark olive green Khaki Orange Violet red

Dim grey Light steel blue Orange red Wheat
Firebrick Light grey Orchid White

Forest green Light blue Pale green Yellow
Gold Lime green Pattens blue Yellow green

Goldenrod Magenta Pink
Green Maroon Plum

Figure 10.2 Color names for plotting scatter data.

10.2 Gtplot
Gtplot can overlay scatter data points on all of the plot types, except the pie and bar
charts. To add scatter data to the “special” plots (ternary plot, Piper diagram, etc.),
you specify the fluid composition, expressed in terms of thermodynamic components,
as described below.

The first line in the table is a header that names each column; e.g., Temperature, pH,
Carbon, Na+, and so on. Enclose multiword names in quotes (e.g., "Ionic strength",
"Dissolved solids", etc.). You label the columns as follows:

Components: Enter the component name (Ca++, SiO2(aq), etc.).

Minerals: Enter the mineral name as it appears in the Gtplot menus (Quartz,
Kaolinite, etc.).

Species concentration: Enter the species name in parenthesis following the word
“molality” (e.g., molality(Na+), molality(NaSO4-), etc.).

129

GWB Reference Manual

Species activity: Enter the species name in parenthesis following the word “activity”
(e.g., activity(Na+), activity(NaHCO3), etc.).

Species activity coefficients: Enter the species name in parenthesis following the
word “gamma” (gamma(Na+), gamma(NaCl), etc.).

Elemental composition: Enter the element name (Oxygen, Carbon, etc.).

Fugacities: Enter the name of the gas (CO2(g), Steam, etc.).

Mineral saturation: Enter the mineral name in parenthesis following the word
“logQoverK” (e.g., logQoverK(Albite), "logQoverK(Albite high)", etc.).

Isotopic composition: Enter the fluid or mineral name in parenthesis following the
isotope label (2-H, 18-O, etc.). Examples: "2–H(Bulk-system)", 18-O(CO2(aq)).

Sorbed fractions: Enter the component name in parenthesis following the word
“Xsorbed” (e.g., Xsorbed(Pb++)).

Chemical parameters, Physical parameters, and Reactant properties: Enter the
variable name as it appears in the Gtplot menus (Eh, "Dissolved solids", etc.).

The scatter dataset should contain numerical values for any of the following:

The composition of the fluid, minerals, sorbate, and bulk system, expressed in
terms of thermodynamic components. The components are the original basis
entries in the thermo dataset, plus any decoupled redox species.

One of the other variables (pH, Dissolved solids, Carbonate alkalinity, etc.)
passed to Gtplot from SpecE8 or React. These variables are those that appear
in diagrams, or are used to calculate unit conversions.

The masses of minerals in the modeled system.

The concentrations, activities and activity coefficients of the dissolved species
(Fe++, Na+, etc.).

The elemental composition of the fluid, minerals, and bulk system.

The fugacities of gases in the fluid.

The saturation indices (log Q=K) for various minerals.

The stable isotopic compositions of the fluid, minerals in bulk, individual minerals,
and the entire system.

The fractions of the various components sorbed onto mineral surfaces.

You enter the numerical values in terms of the following units:

130

Scatter Data

Enter component masses in mg/kg. In this case, concentrations are expressed
in terms of the component species, such as HCO3 or SO4. A bicarbonate
concentration, then, is entered directly in units of mg HCO3/kg.

Masses of minerals over the reaction path are entered in grams.

The unit for species concentration is molality. The activities and the activity
coefficients of dissolved species are unitless.

Elemental compositions are entered in mg/kg. These values are expressed in
terms of the elements, a convention not always followed when reporting anionic
compositions. In creating a dataset, you need to convert analyses given in mg
HCO3/kg to mg C/kg, for example, SO4 to sulfur, and so on.

Gas fugacities are unitless.

Mineral saturation is entered as the saturation index, log Q=K.

Isotopic composition is entered in permil on the scale (e.g., SMOW) assumed in
the SpecE8 or React calculation.

Sorbed fractions are entered as fractions.

Values for the chemical and physical parameters and reactant properties are
entered in their native units, which are the units shown when you first select a
variable in the XY Plot dialog. The native unit for temperature, for example, is
°C, ionic strength and Eh are given in molal and volts, and fO2 is entered as
log fugacity. The native units for Mass solution and Mass H2O are kg; those for
Carbonate alkalinity are mg/kg as CaCO3.

A lack of data may be indicated by a string such as “n/d”.

An example of a table dataset to be used with SpecE8 is

pH Na+ Fe++ "Dissolved solids"
--
3.3 .15 5 1000
2.6 .12 15 800
6. .5 n/d 200 # Buffalo Bayou
4.3 .75 0.1 450

To render these data, run SpecE8 on a problem containing NaC and FeCC to produce
a “SpecE8_plot.gtp” file, start Gtplot, and load the scatter dataset with File ! Open
! Scatter Data. . . . From the Plot menu, choose the XY Plot, for example, and set
NaC and FeCC on the axes.

Now, if you choose an appropriate unit for the axis (�g/kg, mg/kg, g/kg, or wt%),
the data points for the NaC and FeCC columns appear on the plot. You may choose
another unit, such as molal concentration or grams, but you must first include in the
scatter dataset columns for Mass H2O and Mass solution so that Gtplot can convert

131

GWB Reference Manual

the data from mg/kg to the plotting unit; if you do not do so, Gtplot assumes a value
of 1 kg for both variables.

In “special” plots (Piper diagrams, etc.) showing the variable “HCO3 + CO3”, you
should enter a value in the scatter dataset for Carbonate alkalinity, in mg/kg as CaCO3,
so that Gtplot can render the variable correctly. If you do not enter a value for alkalinity,
the program will render the variable in terms of the reported HCO3 concentration, if
available, in which case the diagram produced will not account for the speciation of
carbonate.

In order to see TDS represented as circles on Piper, ternary, and Durov diagrams,
you should enter a value for “Dissolved solids” for each sample.

To assign symbols to each column of variables on an xy plot, add a line to the
table with symbol names, using the choices in Figure 9.1 (or a place holder such as
“--”). Set symbol color using the choices in Figure 9.2. Similarly, set point size using
fields like 15pt, 30pt, and so on. For example, adding the lines

-- -- circle square
-- -- red green
-- -- 24pt 30pt

to the example above causes FeCC concentration to be represented by 24pt red
circles, and Dissolved solids by 30pt green squares.

To assign symbols to each sample (i.e., each line in the dataset), append any or
all of the following to the data line in question: the symbol name, its color, and its
point size. The symbol specifications on the sample line will be used to represent
each sample in all of the special plots. On an xy plot, you may choose whether to
assign the symbol, its color, and its size according to the variable (by analyte) or the
sample (by sample). For example, the table

pH Na+ Fe++ "Dissolved solids"

3.3 .15 5 1000 circle 24pt red
2.6 .12 15 800 box 24pt green
6. .5 n/d 200 delta 24pt blue
4.3 .75 0.1 450 caution 24pt yellow
-- -- circle square
-- -- red green
-- -- 24pt 30pt

would allow great flexibility in how to depict the data on an xy plot.
An example of a table dataset to be used with React is

pH Eh Iron Sulfur

3.3 .15 5 100
2.6 .12 15 80

132

Scatter Data

6. .5 n/d 20 # Buffalo Bayou
4.3 .75 0.1 45

To render these data, run React on a problem containing iron and sulfur to produce a
“React_plot.gtp” file, start Gtplot, and load the scatter dataset with the File ! Open
! Scatter Data. . . option. From Plot ! XY Plot. . . choose to plot the elemental
composition of the fluid. (Similarly, if you had entered data in columns labeled Fe++
and SO4–, you would choose to plot components in the fluid.) Select either pH or Eh
as the variable for the x axis, and iron, sulfur, or both, for the y axis.

Now, if you choose an appropriate unit for the y axis (�g/kg, mg/kg, g/kg, or wt%),
the data points for the iron and sulfur columns appear plotted against pH or Eh.
You may choose another unit, such as molal concentration or grams, but you must
first include in the scatter dataset columns for Mass H2O and Mass solution so that
Gtplot can convert the data from mg/kg to the plotting unit; if you do not do so, Gtplot
assumes a value of 1 kg for both variables.

In a similar fashion, you could plot Eh against pH by choosing the “Chemical
parameters” option from Plot ! XY Plot. . . . If scatter values lie outside the plot axis
ranges, touch Ctrl+Z.

A second example of a scatter dataset to be used with React is

"Rxn progress" activity(NaCl) "logQoverK(Albite low)"

.3 5.13e-9 .2

.5 5.15e-9 .1

.7 5.17e-9 .15

.9 5.19e-9 n/d

To render these data, run React on a problem containing sodium and silicon to produce
a “React_plot.gtp” file, start Gtplot, and load the scatter dataset with the File! Open
! Scatter Data. . . option. From Plot ! XY Plot. . . choose to plot “Species activity”.
Select “Reaction Progress” as the variable for the x axis, and “NaCl” for the y axis.
Choose to plot “Mineral Saturation” to show the scatter data for the saturation state
of the mineral “Albite low”.

10.3 P2plot
P2plot can overlay scatter data points on the 2D diagrams and cross-section plots it
produces. The tables should be formatted like they are for Gtplot.

10.4 Xtplot
Xtplot can overlay scatter data points on all of the plot types, except the pie and bar
charts. As with datasets for Gtplot and P2plot, the first line in the table is a header
that names each column. Use the same labels presented for Gtplot, with the addition
of the following variables specific to Xtplot:

133

GWB Reference Manual

Label position and time as Length, Width, or Time.

An example of a table dataset to be used with Xtplot is

Time pH Zinc Sulfur

.15 3.3 5 100
.30 2.6 15 80
.50 6. n/d 20 # Sample 98-010
.55 4.3 0.1 45

To render these data, run X1t or X2t on a problem containing zinc and sulfur to produce
an “X1t_plot.xtp” or “X2t_plot.xtp” file. Start Xtplot and load the scatter dataset with
File! Open! Scatter Data. . . . From Plot! XY Plot. . . choose to plot the elemental
composition of the fluid versus time. (Similarly, if you had entered data in columns
labeled “Fe++” and “SO4–”, you would choose to plot components in the fluid.) Select
zinc, sulfur, or both, as variables to plot on the y axis.

Now, if you choose an appropriate unit for the y axis (�g/kg, mg/kg, g/kg, or wt%),
the data points for the zinc and sulfur columns appear plotted against time. You may
choose another unit, such as molal concentration or grams, but you must first include
in the scatter dataset columns for "Mass H2O" and "Mass solution" so that Xtplot can
convert the data from mg/kg to the plotting unit.

Alternatively, choose to plot “Chemical parameters” and set pH as the y axis variable.
In this case, the scatter values for the column labeled pH appear on the plot. If scatter
values lie outside the plot axis ranges, touch Ctrl+Z.

A second example of a scatter dataset to be used with Xtplot is

Length Width activity(NaOH) logQoverK(NaBr)

2e4 2e4 5e-12 -12
4e4 4e4 6e-12 -10
6e4 6e4 7e-12 -6
8e4 8e4 8e-12 n/d

To render these data, run X1t or X2t on a problem containing sodium to produce
a “X1t_plot.xtp” or “X2t_plot.xtp” file, start Xtplot, and load the dataset with File !
Open ! Scatter Data. . . . From Plot ! XY Plot. . . choose to plot “Species activity”
and set “NaOH” as the y-axis variable. Select “X position” as the variable for the x

axis. Choose to plot “Mineral Saturation” to show the scatter data for the saturation
state of “NaBr”. You must include both “Length” (X position) and “Width” (Y position)
values to show the scatter data on a mapview plot.

134

Multiple Analyses

It is not uncommon to have stored in a spreadsheet the results of a number of
chemical analyses that you would like to enter – one at a time – into one of the GWB
applications. You might wish to use SpecE8, for example, to figure calcite saturation
or CO2 fugacity for a group of analyses.

You can store multiple analyses in a GSS spreadsheet, select one or more samples,
then launch SpecE8 or React with Analysis! Launch. . . . An instance will be launched
configured with the values in the first sample. Alternatively, you can add calculated
analytes for all of your analyses to your GSS spreadsheet directly. See “Calculating
analytes” in the Using GSS chapter of the GWB Essentials Guide.

If you have relatively few analyses in another type of spreadsheet, you may use the
GWB’s “drag and drop” feature. Highlight data for each analysis in the spreadsheet,
left-click, drag into the GWB app, and calculate the desired result. For details, refer
to the Importing data section of the Introduction to the GWB Essentials Guide.

Given a large number of chemical analyses, this procedure becomes tedious. It is
best in this case to prepare a short script that performs the operations automatically,
adding the results to the spreadsheet. This chapter describes how to do so.

You may also want to take advantage of the “scatter data” feature of the GWB, which
allows chemical analyses to be overlain as data points on diagrams produced by Act2,
Tact, Gtplot, and Xtplot. For more information, refer to the Scatter data sections of
the corresponding chapter (Using Act2, and so on) in the GWB documentation set.

11.1 Calculation procedure
Suppose you have a number of chemical analyses stored in an Excel spreadsheet,
and you would like to add to the spreadsheet results calculated by one of the GWB
applications. To do so, follow this procedure:

Save the spreadsheet from Excel as a tab-delimited text file. Go to File ! Save
As. . . and choose “Text (Tab delimited) (*.txt)” or “Unicode Text (*.txt)” as the file
type. Excel will create a new file with a “.txt” file extension.

Prepare and run a GWB script, such as the one in the next section, that runs
within the GWB application. The script takes the text file as input and produces

135

GWB Reference Manual

a new text file containing the original data as well as the calculation results. The
Control Scripts chapter in this GWB Reference Manual describes how to prepare
GWB scripts. An example of such a script, which you may take and modify for
your purposes, is given in the next section.

Open (File ! Open. . . ; choose “All Files (*.*) as the file type) the resulting text
file in Excel. You can now save this file as an Excel spreadsheet (a “.xls” file).

The next section carries you through an example of this procedure.

11.2 Example calculation
The files installed under directory “Scripts\Spreadsheet” within the GWB installation
directory (e.g., “\Program Files\GWB”) provide an example of using a script to
process multiple analyses from an Excel spreadsheet. To run the example, copy files
“Spreadsheet.xls” and “Script.xls” from this directory to a convenient location on your
computer, such as the “My Documents” folder.

The analyses are stored in file “Spreadsheet.xls”. Open this file in Excel by
double-clicking on it. Save it as a tab-delimited text file, as described in the previous
section. This creates a file “Spreadsheet.txt”.

You may examine this file with an editor such as Notepad. It looks like

ID pH HCO3- SO4-- Cl- Ca++ Mg++ Na+
GW-12 6.78 585.7 309 56 205.6 63.9 21.4
GW-13 6.78 585.7 311 56.2 214.9 66.8 22.6
GW-14 6.85 652.8 582 42.6 269.2 89 25.8
GW-15 7 558.2 400 65.4 216.2 65.7 32
(and so on)

The first line in the file contains column headers including “pH” and various basis
species, and subsequent lines contain the numerical data. The headers will be used
together with the numerical values to create SpecE8 commands such as

pH = 6.78
HCO3- = 585.7 mg/kg

File “Script.sp8” contains a SpecE8 script that reads “Spreadsheet.txt”, calculates
CO2 fugacity and calcite saturation, and writes a file “Output.txt”. You can modify this
script for your own purposes.

The script is shown below. For clarity, SpecE8 commands within the script are listed
in bold face and comment lines are in italics; the actual file, of course, is simply a
text file.

script start
Set up the input and output.
set in_id [open "Spreadsheet.txt" r]
set out_id [open "Output.txt" w]

136

Multiple Analyses

fconfigure $out_id -encoding unicode

First line contains column headers; check for Unicode.
gets $in_id headers
if {![string is ascii $headers]} {

close $in_id
set in_id [open "Spreadsheet.txt " r]
fconfigure $in_id -encoding unicode
gets $in_id headers

}
puts $out_id "$headers\tf CO2\tCalcite SI"

Loop through remaining lines.
gets $in_id aline
report set_digits 4
while {$aline != ""} { set i 0

reset; balance on Cl-

Set basis constraints from input data.
foreach a [lrange $aline 1 end] {

incr i 1
if {[lindex $headers $i] == "pH"} {

pH = $a
} else {

$a = [lindex $headers $i] mg/kg
}

}

Run SpecE8 calculation and write data + results.
go
foreach a [lrange $aline 0 end] {

puts -nonewline $out_id "$a\t"
}
if {[report success]} {

puts $out_id \
"[report fugacity CO2(g)]\t[report SI Calcite]"

} else {
puts $out_id "Did not converge"

}

Next line of input.
gets $in_id aline

}
Clean up.

close $out_id

137

GWB Reference Manual

close $in_id
quit

Double click on file “Script.sp8” to start SpecE8 and execute the script. The program
will produce a file “Output.txt” that contains the original data with the values calculated
for CO2 fugacity and calcite saturation appended as new columns. The file looks like

D pH HCO3- SO4-- ... Na+ f CO2 Calcite SI
GW-12 6.78 585.7 309 21.4 0.06537 0.2281
GW-13 6.78 585.7 311 22.6 0.06515 0.2427
GW-14 6.85 652.8 582 25.8 Did not converge
GW-15 7 558.2 400 32 0.04134 0.4714

Open “Output.txt” in Excel by selecting File! Open. . . and choosing “All Files (*.*)”
for the file type. Follow the Excel “Text Import Wizard”, accepting the default at each
step: “Delimited” file type, “Tab” delimiter, “General” data format. The calculation results
will appear as would any spreadsheet, which you may save as an Excel (“.xls”) file.

138

Remote Control

You can run various GWB application programs not only by hand from the keyboard,
but by “remote control” from a program or script you write. Note that this is now a legacy
feature that has been replaced by the Plug-in Feature, and is no longer supported.
Rxn, Act2, Tact, SpecE8, React, X1t, and X2t can be run in this way. The program
you write serves as the “master program”, which controls the GWB application as a
“slave program”.

In writing a program of your own, for example, you might need to determine the
saturation state of calcite in a fluid of arbitrary composition. Instead of developing
code to calculate the distribution of mass and mineral saturation states in a fluid, you
could invoke SpecE8 from within your program and let it do the work for you.

Similarly, you could use the remote control feature to balance reactions with Rxn,
calculate activity diagrams with Act2, or figure the results of irreversible reaction
paths with React. In each case, you configure the GWB application by sending text
commands, trigger the calculation, and then retrieve the calculation results to use for
your own purposes.

You can transfer the results from the slave application to the master program with
the “report” command, as described in the Report Command chapter in this GWB
Reference Manual. Or, as is especially useful with Act2 and Tact, you can copy
calculation results such as activity diagrams to your computer’s clipboard, where they
can be retrieved as graphical images. To do so, you use the “clipboard” command.
Finally, you can simply read datasets, such as “SpecE8_output.txt” produced by the
GWB applications, into the master program.

Your program, the master program, controls a GWB application as a slave program
through a interprocess communications device known as a “pipe”. (Pipes are not
available in MS Windows 98 or ME, so you cannot use the remote control feature
under these operating systems.) There are two ways to set up the communications.
You can create two “unnamed pipes”, one for input to and the other for output from
the GWB application. Or, you can establish a “named pipe”, which allows bidirectional
data transfer.

Using a named pipe has a couple of advantages over unnamed pipes. First, the
master program’s standard input and output streams are available for use in the normal
manner. Second, by establishing two or more pipes with different names, any number
of copies of the GWB application programs can be invoked simultaneously.

139

GWB Reference Manual

Sending data through a pipe is much like writing to a file, and receiving data is
like reading from a file. Running a GWB application by remote control, therefore,
involves little more than standard programming techniques already familiar to anyone
with modest programming experience.

To run a GWB application by remote control, you start it from the master program
using the “-pipe” command line option. This option is followed by the name of the
pipe, or for an unnamed pipe the keyword “stdio”. In MS Windows, pipes are located
in a pseudo-directory at the top level of the file system called “pipe”.

If the master program, for example, has created an unnamed pipe, it could invoke
program SpecE8 using the command

spece8 -pipe stdio

In this case, the standard output stream of the master serves as standard input to
the slave, and the slave’s standard output stream is the master’s input stream.

Similarly, if the master program has created a named pipe called “\pipe\mypipe”,
it could invoke program SpecE8 by using the command

spece8 -pipe \pipe\mypipe

The master program could then communicate with SpecE8 by writing to and reading
from the pipe.

The sections below show examples of how the remote control feature can be
implemented in the C++ programming and Tcl scripting languages, using named and
unnamed pipes.

12.1 C++ program using unnamed pipes
In writing a program in C++, you will likely find it easiest to use a set of helper functions
contained in file “RC_helper.cpp”, a copy of which is installed in the “src” subdirectory
of the GWB installation directory (e.g., in “\Program Files\GWB\src”). The helper
functions in this file include:

OpenGwbApplic Start the GWB program of interest.
SendCommand Transmit a command to the GWB app,

and, optionally, receive the results of the command.

There is a version of each function for unnamed and named pipes. By using these
functions, the programmer can avoid worrying about the details of communication
between the master and slave programs.

If you #include the header file “RC_helper.h” at the top of your master program,
the helper functions will be available. Of course, you can modify and extend these
functions for your own purposes, if you wish. The program must also be compiled
with the “RC_helper.cpp” file, also provided in the same location.

In the following example, included in the “src” subdirectory, a console program
invokes React using unnamed pipes to integrate a kinetic rate law for quartz dissolution

140

Remote Control

at 100°C. Array “script” is a vector of pointers to the commands needed to configure
React and trigger the calculation.

The program opens React, sends it the commands in array “script”, uses the “report”
command to request the calculation result, which it extracts from React’s response
using “sscanf”. Note that since the program uses unnamed pipes, output to the console
is sent via the “stderr” output stream.

/* RC_example1.cpp */

#include "/Program Files/GWB/src/RC_helper.h"
#include <stdio.h>

char* script[] = {
"reset",
"time begin = 0 days, end = 5 days",
"T = 100",
"SiO2(aq) = 1 umolal",
"react 5000 g Quartz",
"kinetic Quartz rate_con = 2.e-15 surface = 1000",
"go",
""

};

int main(int argc, char* argv[])
{

char line[200];
char discard[20];
char** command;
double SI_Quartz;

fprintf(stderr, "Starting program React.\n");
OpenGwbApplic("\\Program Files\\gwb\\react.exe");

for (command = script; **command; command++)
SendCommand(*command);

SendCommand("report SI Quartz", line, sizeof(line));
sscanf(line, "%lg", &SI_Quartz);
fprintf(stderr, "Value of SI Quartz is %g.\n", SI_Quartz);

SendCommand("quit");

fprintf(stderr, "press return to exit> ");
gets_s(discard);
return 0;

}

141

GWB Reference Manual

12.2 C++ program using named pipes
As a second example of a master program written in C++, we open two copies of
React as slave programs; the copies run simultaneously. To do so, we establish two
pipes, using the “Pipe” class defined in “RC_helper.h”. In this case, the standard I/O
channels are available to the program, so we need not direct console messages to
“stderr”.

/* RC_example2.cpp */

#include "/Program Files/GWB/src/RC_helper.h"
#include <stdio.h>

char* script1[] = {
"reset",
"time begin = 0 days, end = 5 days",
"T = 100",
"SiO2(aq) = 1 umolal",
"react 5000 g Quartz",
"kinetic Quartz rate_con = 2.e-15 surface = 1000",
"go",
""

};

char* script2[] = {
"reset",
"time begin = 0 days, end = 5 days",
"T = 100",
"SiO2(aq) = 1 umolal",
"react 5000 g Quartz",
"kinetic Quartz rate_con = 2.e-15 surface = 750",
"go",
""

};

int main(int argc, char* argv[])
{

char line[200];
char discard[20];
char** command1;
char** command2;
double SI_Quartz;
Pipe pipe1("pipe1");
Pipe pipe2("pipe2");

printf("Open two copies of React.\n");
OpenGwbApplic(pipe1,

142

Remote Control

"\\Program Files\\gwb\\react.exe");
OpenGwbApplic(pipe2,

"\\Program Files\\gwb\\react.exe");

for (command1 = script1, command2 = script2;
**command1 || **command2;
**command1 ? command1++ : 0, **command2 ? command2++ : 0) {

if (**command1)
SendCommand(pipe1, *command1);

if (**command2)
SendCommand(pipe2, *command2);

}

SendCommand(pipe1, "report SI Quartz", line, sizeof(line));
sscanf(line, "%lg", &SI_Quartz);
printf("SI Quartz for 1000 cm2/g is %g.\n", SI_Quartz);

SendCommand(pipe2, "report SI Quartz", line, sizeof(line));
sscanf(line, "%lg", &SI_Quartz);
printf("SI Quartz for 7500 cm2/g is %g.\n ", SI_Quartz);

SendCommand(pipe1, "quit");
SendCommand(pipe2, "quit");

printf("press return to exit> ");
gets_s(discard);
return 0;

}

12.3 Tcl script using unnamed pipes
You may find it especially useful to invoke GWB applications from within another
application or calculation environment, such as a spreadsheet, word processor, or
mathematical interpreter. You can do so, as long as the environment has scripting
abilities and can open pipes.

As an example, we repeat the first example above in the Tcl scripting language. As
in the C++ example, a number of helper functions are available in file “RC_helper.tcl”,
installed with the GWB in subdirectory src. The complete Tcl script is given below.

source RC_helper.tcl

set cmdlist {
reset
{time begin = 0 days, end = 5 days}
{T = 100}
{SiO2(aq) = 1 umolal}

143

GWB Reference Manual

{react 5000 g Quartz}
{kinetic Quartz rate_con = 2.e-15 surface = 750}
go

}

OpenGwbApplic {/Program Files/gwb/react/react.exe}
foreach cmd $cmdlist {

SendCommand $cmd
}
SendCommand {report SI Quartz} line
puts "SI Quartz is $line."
SendCommand quit

12.4 Perl script using unnamed pipes
As a final example, we show how to run React by remote control from a Perl script.
The example below uses the object oriented Perl module “RC_helper.pm”, included
in the “src” subdirectory of the GWB installation.

#!/usr/bin/env perl
use strict;
use warnings;
use lib "\\Program Files\\Gwb\\src";
use RC_helper;

my $script = <<SCRIPT;
reset
time begin = 0 days, end = 5 days
T = 100
SiO2(aq) = 1 umolal
react 5000 g Quartz
kinetic Quartz rate_con = 2.e-15 surface = 1000
go
SCRIPT

print "Starting program React.\n";
my $react = RC_helper->new("\\Program Files\\Gwb\\react.exe");
for my $command (split /\n/, $script) {

$react->send_command($command);
}
my $SI_Quartz = $react->send_command("report SI Quartz");
print "Value of SI Quartz is $SI_Quartz\n";

$react->send_command("quit");

144

Index

acidity, 120
activity, 40, 116
activity coefficients, data for calculating, 13
alkalinity, 40, 119
angle, 121
aqueous, 40
aqueous species, in thermodynamic dataset,

14, 16
arbitrary reaction definition, in surface

dataset, 33
arbitrary reaction definition, in

thermodynamic dataset, 23

basis, 40
basis species, in surface dataset, 28
basis species, in thermodynamic dataset, 14
biomass, 40
boltzman, 40
bulk_volume, 40

C++ plug-in, 60
C++ program, 140, 142
C++ programs, 63
calculation procedure, multiple analyses, 135
calculator, 5
carbon, 121
cat_area, 40
cd-music model, in surface dataset, 32
charge, 40
charged uncomplexed sites, in surface

dataset, 32
chlorinity, 40
clipboard, 123
coef_dispersion, 40
colloids, 40
colonies per volume, 121
color, 121

command line interface, 3
compressibility, 120
concentration, 40, 115
configuration, 40
constraints, 40
contact_area, 40
control script, example, 57
control scripts, 55
control statements in scripts, 56
corrosivity, 121
couples, 40
custom plug-in, 109

database, 40
Deltat, 42
density, 119
deuterium (2H), 121
diffusion and dispersion coefficients, 120
discharge, 42
distance, 116
distribution coefficients, 120

EC, 42
efflux, 42
Eh, 42
electrical conductivity, 120
electrical potential, 116
elements, 42
elements, in thermodynamic dataset, 14
End line, in surface dataset, 32
energy, 120
energy content, 120
equil_eqn, 42
equil_favors, 42
equil_temp, 42
exchange capacity, 120
exchange_capacity, 42

145

Index

FA, 42
FD, 42
flow rate, 118, 119
foaming agents, 121
font for data markers, 126
formulae for aqueous species, in

thermodynamic dataset, 24
Fortran plug-in, 69
Fortran programs, 73
free electron, in thermdynamic dataset, 17
free electron, in thermodynamic dataset, 23
freeflowing, 42
fugacity, 42, 116
fugacity coefficients, in thermodynamic

dataset, 24

gamma, 42
gas_pressure, 42
gases, 42
gases, in thermodynamic dataset, 18
get_default_units, 42
get_units, 42
graphics output, 123

hardness, 42
hardness_carb, 42
hardness_ncarb, 42
header data, 12, 26
header variables, in thermodynamic dataset,

13, 23
heat capacity, 120
heat source, 120
history substitution, 3
hyd_pot, 42

imbalance, 42
imbalance_error, 44
inert_volume, 44
influx, 44
initial lines, 12, 26
initial lines, in thermodynamic dataset, 23
IS, 44
isotopes, 44, 52
iterations, 44

Java plug-in, 80
Java programs, 83

Kd, 44

keyboard shortcuts, 7

Legacy features, 2
legacy formats, surface datasets, 32
legacy formats, thermodynamic datasets, 22
legacy temperature expansion, for virial

coefficients, 20, 21
logfO2, 44
logk, 44
logks, 44
logQoverK, 44

mass, 44
mass_reacted, 44
mass_remaining, 44
MATLAB plug-in, 102
MATLAB programs, 106
mineral_mass, 44
mineral_volume, 44
minerals, 44
minerals, in thermodynamic dataset, 18
mixing_fraction, 46
mobility, 46
multiple analyses, 135
multiple analyses, example calculation, 136
mv, 46
mw, 46

named pipes, 142
naqueous, 46
nbasis, 46
ncolloids, 46
ncouples, 46
nelements, 46
new temperature expansion, for SIT

coefficients, 22
new temperature expansion, for virial

coefficients, 20, 21
ngases, 46
nisotopes, 46
nlogks, 46
nminerals, 46
Nnode, 46
nreactants, 46
nsorbed, 46
nsorbing_surfaces, 46
nstagnant, 46
nsurf_species, 46
Nx, 46

146

Index

Ny, 46

odor, 121
online documentation, 6
options, 46
oxide components, in thermodynamic

dataset, 19
oxygen, 121
oxygen demand, 121

pe, 46
percent removal, 120
Perl plug-in, 88
Perl programs, 91
Perl script, 144
permeability, 48, 120
pH, 48, 116
Pitzer coefficients, in thermodynamic

dataset, 19
plug-in feature, 59, 60, 69, 73, 80, 88, 95,

102, 109
PMC, 121
polydentate sorption, in surface dataset, 32
polyfit, 48
polynomial expansions, in thermodynamic

datasets, 11
pore volumes, 120
porosity, 48
pressure, 48, 120
principal temperatures, in thermodynamic

dataset, 13
PV, 48
Python plug-in, 95
Python programs, 98

Q/K, 120
QoverK, 48

radioactive emission per volume, 121
radioactive exposure over time, 121
rate_con, 48
ratecon_unit, 48
reactant_area, 48
reactant_type, 48
reactants, 48
reaction, 48
reaction rate, 116–118
reactions, in surface dataset, 27
reactions, in thermodynamic dataset, 14

redox couples, in thermodynamic dataset, 23
redox coupling reactions, in thermodynamic

dataset, 15
remote control, 139
report command, 35
results, 62, 72, 82, 90, 97, 104, 112
rxn_rate, 48

saving images, 124
scatter data, 127
scripts, interaction with application, 56
sections, in a surface dataset, 25
sections, in a thermodynamic dataset, 9
set_digits, 48
set_node, 48
set_units, 48
SI, 44
Sionst, 48
SIS, 48
SIT activity model, in thermodynamic

dataset, 23
SIT coefficients, in thermodynamic dataset,

19
site density units, in surface dataset, 33
soln_compressibility, 48
soln_density, 48
soln_expansivity, 48
soln_mass, 48
soln_viscosity, 50
soln_volume, 50
sorb_area, 50
sorbed, 50
sorbing minerals, in surface dataset, 28
sorption capacity, 120
sorption_capacity, 50
special characters, 5
species pairs and triplets, virial coefficients

for, 21
species, in surface dataset, 27
species, in thermodynamic dataset, 14
specific discharge, 119
spelling completion, 3
stagnant, 50
startup files, 6
success, 50
sulfur, 121
surf_charge, 50
surf_charge0, 50
surf_chargeb, 50

147

Index

surf_charged, 50
surf_potential, 50
surf_potential0, 50
surf_potentialb, 50
surf_potentiald, 50
surf_species, 50
surf_type, 50
surface charge, 120
surface datasets, 25
surface species, in surface dataset, 29
surfaces, 50
system commands, 6

T, 50
T-table expansions, in thermodynamic

datasets, 10
Tcl license agreement, 58
Tcl script, 143
TDS, 50
temperature, 50, 121
temperature expansion, in thermodynamic

dataset, 23
Temperature expansions, 10, 26
temperature expansions, for virial

coefficients, 20
temperature expansions, in surface dataset,

33
temperature range of validity, virial

coefficients, 21
temps, 50
Tend, 50
text size in the GWB windows, 7
thermal conductivity, 120
thermal expansivity, 120
thermal transmissivity, 120
thermo data line, in surface dataset, 32
thermodynamic datasets, 9
three-layer model, in surface dataset, 32
Time, 50
time, 116
Tionst, 44
total_biomass, 50
total_reacted, 50
TPF, 50
tritium (3H), 121
Tstart, 50
turbidity, 121

unit conversion, 115

unnamed pipes, 140, 143, 144

velocity, 52, 119
virial coefficients, in thermodynamic dataset,

19
viscosity, 120

Watact, 52
watertype, 52
Wmass, 52

xcoef_dispersion, 52
xdischarge, 52
Xfree, 52
Xi, 52
xpermeability, 52
xsorbed, 52
xvelocity, 52
xycoef_dispersion, 52

ycoef_dispersion, 52
ydischarge, 52
ypermeability, 52
yvelocity, 52

148

	Introduction
	Chapters in the manual
	Legacy features

	Command Line Interface
	Spelling completion
	History substitution
	Special characters
	Calculator
	Startup files
	Online documentation
	System commands
	Text size in the windows
	Keyboard shortcuts

	Thermo Datasets
	Dataset format
	Temperature expansions
	T-table expansions
	Polynomial expansions
	Choice of expansion

	Header data
	Initial lines
	Principal temperatures
	Header variables

	Species and reactions
	Elements
	Basis species
	Redox couples
	Aqueous species
	Free electron
	Minerals
	Gases
	Oxide components

	Virial coefficients
	Temperature expansions
	Data blocks for species pairs and triplets

	Legacy dataset formats
	Temperature expansions
	Initial lines
	SIT activity model
	Header variables
	Arbitrary reaction definition
	Redox couples
	Free electron
	Formulae for aqueous species
	Fugacity coefficients

	Surface Datasets
	Sections in a surface dataset
	Temperature expansions
	Header data
	Initial lines

	Species and reactions
	Basis species
	Sorbing minerals
	Surface species

	Legacy dataset formats
	Thermo data line
	Three-layer models
	Polydentate sorption
	End line
	Charged uncomplexed sites
	Site density units
	Arbitrary reaction definition
	Temperature expansions

	Report Command
	Control Scripts
	Control statements
	Interacting with the application
	Example control script
	Tcl license agreement

	Plug-in Feature
	C++
	Initializing the GWB application
	Configuring and executing calculations
	Retrieving the results
	C++ programs
	Compiling and linking

	Fortran
	Initializing the GWB application
	Configuring and executing calculations
	Retrieving the results
	Fortran programs
	Compiling

	Java
	Initializing the GWB application
	Configuring and executing calculations
	Retrieving the results
	Java programs
	Java command line

	Perl
	Initializing the GWB application
	Configuring and executing calculations
	Retrieving the results
	Perl programs
	Perl command line

	Python
	Initializing the GWB application
	Configuring and executing calculations
	Retrieving the results
	Python programs
	Python command line

	MATLAB
	GWBplugin MATLAB wrapper class overview
	Initializing the GWB application
	Configuring and executing calculations
	Retrieving the results
	Cleaning up
	MATLAB code examples using the plug-in feature
	MATLAB command line

	Other
	GWBplugin.dll function prototypes
	Initializing the GWB application
	Configuring and executing calculations
	Retrieving the results

	Units Recognized
	Graphics Output
	Clipboard
	Saving images
	Font for data markers

	Scatter Data
	Act2 and Tact
	Gtplot
	P2plot
	Xtplot

	Multiple Analyses
	Calculation procedure
	Example calculation

	Remote Control
	C++ program, unnamed pipes
	C++ program, named pipes
	Tcl script, unnamed pipes
	Perl script, unnamed pipes

	Index

